Web Metrics: A Primer for UX Pros - UPDATED

2,441 views

Published on

How to use publicly available and private web metrics for UX strategy, research, benchmarking, concepting and testing. This talk was given in NYC at UX Acrobatics, March 2014; a revised version at UX + Data Meetup NY, June 2014; revised for UXPA International, July 2014; and updated again for General Assembly San Francisco 1-day workshop, August 3, 2014.

Published in: Technology
0 Comments
19 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,441
On SlideShare
0
From Embeds
0
Number of Embeds
724
Actions
Shares
0
Downloads
0
Comments
0
Likes
19
Embeds 0
No embeds

No notes for slide

Web Metrics: A Primer for UX Pros - UPDATED

  1. 1. UX + WEB METRICS OXFORD TECHNOLOGY VENTURES How to Benchmark, Measure & Evaluate UX Impact ! ! General Assembly August 03, 2014 Bev May Beverly@OxfordTech.us @OxfordTech OxfordTech.us @UXAwards UXAwards.org
  2. 2. QUESTIONS OXFORD TECHNOLOGY VENTURES 1. Have own Project / Sector to Research? 2. Web-Based? 3. Bring Metrics in a Spreadsheet? 4. Have a Computer? 5. Level of Familiarity with Web Metrics? 6. Any Data Scientists / Statisticians / Metrics Pros? 7. # Years Experience in Tech / Digital?
  3. 3. OxfordTech.us | GA: Web Metrics l August 2014 http://rlv.zcache.com/im_right_youre_wrong_next_coffee_mug-rbaffc7f99bad4d23bca7de839ac40bff_x7k28_8byvr_512.jpg
  4. 4. March to Nowhere NO $$ NO TIME WE KNOW OUR INDUSTRY WE KNOW WHAT OUR AUDIENCE WANTS AS AN EXPERT- YOU SHOULD KNOW WHAT’S BEST STIFLE CREATIVITY / FUEL MEDIOCRITY OxfordTech.us | GA: Web Metrics l August 2014
  5. 5. Benefit 1: THE UNKNOWN UNKNOWNS. OxfordTech.us | GA: Web Metrics l August 2014 Donald Rumsefeld, wikipedia.com
  6. 6. OxfordTech.us | GA: Web Metrics l August 2014 Munch, the Scream- Wikipedia.org/ + Improve Outcomes
  7. 7. OxfordTech.us | GA: Web Metrics l August 2014 LEAN: Helps Validate Before Dev & Launch (not just after!) http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/8/22/1314031516692/A-boy-jumps-off-a-diving--007.jpg
  8. 8. OxfordTech.us | GA: Web Metrics l August 2014 WOW! http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2011/8/22/1314031516692/A-boy-jumps-off-a-diving--007.jpg
  9. 9. Today PART 1: OVERVIEW & CASE STUDY 1.5 HOURS ▪ CONTEXT & METRICS OVERVIEW ▪ PROCESS & IN-DEPTH CASE STUDY EXAMPLE (11 STEPS) ▪ TOP 10 NEWBIE MISTAKES ▪ SUMMARY & Q+A ! BREAK ! PART 2: WORKSHOP! ▪ DATA VIZ CHOICES ▪ DEFINE YOUR KPIS ▪ RESEARCH & GRAPH DATA OF COMPETITORS POSSIBLE 2nd BREAK ! ▪ ANALYZE RESULTS & SHARE ▪ IF TIME - KPI-FOCUSED COMPETITIVE ANALYSIS ▪ RESOURCES OxfordTech.us | GA: Web Metrics l August 2014
  10. 10. CONTEXT OXFORD TECHNOLOGY VENTURES
  11. 11. OxfordTech.us | GA: Web Metrics l August 2014 What is UX? http://etc.usf.edu/clipart/70500/70542/70542_264_ra-090_o_lg.gif
  12. 12. User Centered Design AUDIENCE ! CUSTOMER PROBLEM ! RESEARCH ! PROTOTYPE ! VALIDATE & EVALUATE ! ITERATE OxfordTech.us | GA: Web Metrics l August 2014
  13. 13. Holistic Design Thinking Assumptions true? How to improve? OxfordTech.us | GA: Web Metrics l August 2014 Who is your customer? What’s their problem? What’s your solution? How is it unique/ better than current?
  14. 14. Lean Startup = Good UCD / UX MEASURE LEARN IDEA/ BUILD OxfordTech.us | GA: Web Metrics l August 2014
  15. 15. Validation & Benchmarks: Scary but Critical OxfordTech.us | GA: Web Metrics l August 2014
  16. 16. ▪ Data-driven UX / Product / Strategy agency ▪ Founded 2008, NYC & SF ▪ My background: Product, UX. MBA + MS Tech/UX ▪ OxfordTech.us ▪ Effective ▪ Useful ▪ Engaging ▪ Internal & External Benchmarking ! OxfordTech.us | GA: Web Metrics l August 2014
  17. 17. Clients OxfordTech.us | GA: Web Metrics l August 2014
  18. 18. Product Development OxfordTech.us | GA: Web Metrics l August 2014
  19. 19. UX Awards Premier awards for exceptional digital experience, now in its 4th year OxfordTech.us | GA: Web Metrics l August 2014 UXAWARDS.ORG
  20. 20. UXies: Data Driven Judging OxfordTech.us | GA: Web Metrics l August 2014 UXAWARDS.ORG
  21. 21. Be a Competent UX Generalist OxfordTech.us | GA: Web Metrics l August 2014 http://lawyerkm.com/wp-content/uploads/2008/09/swiss_army_knife1.jpg Metrics UX
  22. 22. WEB METRICS OVERVIEW
  23. 23. What are Metrics? #%<> OxfordTech.us | GA: Web Metrics l August 2014
  24. 24. UX Research Methods • HALLWAY USABILITY • OBSERVATION • INTERACTIVE TESTING (EYE TRACKING, ETC.) • HEAT MAPS • CARD SORTS • SURVEYS • HEURISTIC EVALUATIONS • MARKET RESEARCH • PUBLIC METRICS RESEARCH • METRICS ANALYSIS • MVT & A/B OxfordTech.us | Web Metrics l July 2014 http://www.dsr.wa.gov.au/assets/images/Diagrams/Darts-playing-area.gif!
  25. 25. Metrics Data Sources ▪ Web- public & competitor ▪ Web- internal / private ▪ Social ▪ Mobile Apps ▪ User Testing & Analysis ▪ MVT & A/B ▪ Surveys ▪ Ecommerce OxfordTech.us | GA: Web Metrics l August 2014
  26. 26. Metrics Categories TRAFFIC ! ENGAGEMENT ! AUDIENCE ! PLATFORM ! (REVENUE) OxfordTech.us | GA: Web Metrics l August 2014
  27. 27. Key Traffic Web Metrics MARKETING FOCUS ▪ Uniques ▪ Visits ▪ % from Search -Paid vs. Organic, Top Referring Terms ▪ % from Social ▪ % direct-load ▪ Top Referring Domains OxfordTech.us | GA: Web Metrics l August 2014
  28. 28. Key Engagement Web Metrics UX FOCUS ▪ Visits/ Unique ▪ Page Views (PV) ▪ PVs/Visit, PVs/ Unique ▪ Time Spent ▪ Bounce Rate (1 page/ visit) ▪ Top Entry / Exit Pages ▪ Top Sub-Sites/ Sections OxfordTech.us | GA: Web Metrics l August 2014 http://blog.hugeaim.com/static/wp-content/uploads/2011/07/ballbounce.jpg
  29. 29. Key Audience Web Metrics ▪ Demographics- Age, Income, Gender, Education, Location, Ethnicity, Marital Status, Kids OxfordTech.us | GA: Web Metrics l August 2014 http://clipartist.info/openclipart.org/SVG/rejon/person_outline_4-800px.png
  30. 30. Key Platform Web Metrics DESIGN FOCUS ▪ % Mobile ▪ Display size & resolution - desktop & mobile ▪ OS, Device, Web Speed OxfordTech.us | GA: Web Metrics l August 2014 http://www.gizmoville.com/wp-content/uploads/2012/02/omgitsfullofpixels.png
  31. 31. Summary - Public Web Metrics TRAFFIC- MARKETING ▪ Uniques ▪ Visits ▪ % from Search -Paid vs. Organic, Top Referring Terms ▪ % from Social ▪ % direct-load ▪ Top Referring Domains ▪ Bounce Rate (1 page/ visit) ! AUDIENCE - EVERYONE ▪ Demographics- Age, Income, Gender, Education, Location, Ethnicity, Marital Status, Kids OxfordTech.us | GA: Web Metrics l August 2014 ENGAGEMENT- UX ▪ Visits/ Unique ▪ Page Views (PV) ▪ PVs/Visit, PVs/ Unique ▪ Time Spent ▪ Bounce Rate (1 page/ visit) ▪ Top Entry / Exit Pages ▪ Top Sub-Sites/ Sections ! PLATFORM- DESIGN ▪ % Mobile ▪ Display size & resolution - desktop & mobile ▪ OS, Device, Web Speed ! !
  32. 32. Questions? TRAFFIC- MARKETING ▪ Uniques ▪ Visits ▪ % from Search -Paid vs. Organic, Top Referring Terms ▪ % from Social ▪ % direct-load ▪ Top Referring Domains ▪ Bounce Rate (1 page/ visit) ! AUDIENCE - EVERYONE ▪ Demographics- Age, Income, Gender, Education, Location, Ethnicity, Marital Status, Kids OxfordTech.us | GA: Web Metrics l August 2014 ENGAGEMENT- UX ▪ Visits/ Unique ▪ Page Views (PV) ▪ PVs/Visit, PVs/ Unique ▪ Time Spent ▪ Bounce Rate (1 page/ visit) ▪ Top Entry / Exit Pages ▪ Top Sub-Sites/ Sections ! PLATFORM- DESIGN ▪ % Mobile ▪ Display size & resolution - desktop & mobile ▪ OS, Device, Web Speed ! !
  33. 33. How Public Web Metrics Work ! Statistical Samples ▪ JavaScript ▪ Cookies ▪ Pixels ▪ Server-side tracking ▪ Web Traffic Public = Inaccurate ▪ Won’t be listed on public metrics sites if too small/ new ▪ Heed the warnings OxfordTech.us | GA: Web Metrics l August 2014 http://www.wsgsystems.com/uploads/images/cookies_large.jpg
  34. 34. Internal Metrics ! ▪ Usually more accurate ▪ Requires at least some development ▪ Little competitor visibility (unless high-cost) ▪ Click path Analysis ▪ Heat map Analysis ▪ % Logged In/ Out ▪ Ecommerce: ARPU/RPC, R/T, R/V ▪ Data by Sections/ Categories ▪ Top & Bottom Performing Pages, Sections ▪ Top Entry/ Exit Pages, Sections- More Detailed ▪ Top On-Site Search Terms, 404 pages ▪ % Mobile by Page/ Section/ category ▪ Demographics- Politics, Interests, Credit, Job, OxfordTech.us | GA: Web Metrics l August 2014 Title http: //www.damenationblog.com/wp-content/uploads/2012/06/iStock_000019717637Smal l . jpg
  35. 35. CACSAES VSETNUTUDRYES
  36. 36. Client Case Study, Jan. 2014 TV/ DIGITAL MEDIA BRAND ANALYSIS- OUTPUTS A. Competitive Metrics Analysis (PPT, 80 slides) + Excel Spreadsheet - 24 Competitors, 5 Categories B. UX Competitive Heuristic Evaluation (PPT, 134 slides) C. Quantified Summary of Competitor Evaluation D. Internal Site Metrics Analysis (PPT, 82 slides) E. Internal UX Site Evaluation (PPT, 114 slides) F. New UX Concepting OxfordTech.us | GA: Web Metrics l August 2014
  37. 37. 11 Steps 1. Identify key sites, goals & KPIs 2. Get competitor metrics data from multiple sources 3. Graph data after standardizing in Excel 4. Check for oddities 5. Don’t be a Robot. Review, Analyze & THINK 6. Examine High Performers (Heuristic, Quantified) 7. Analyze Internal Site Metrics 8. Review Internal Site (Heuristic) 9. Generate Actionable Findings 10. Concept New Directions 11. Test & Iterate OxfordTech.us | GA: Web Metrics l August 2014
  38. 38. Data Sources Used: MANUAL Process INTERNAL 1. Comscore 2. Nielsen 3. Adobe Site Catalyst ! EXTERNAL 1. Quantcast 2. Alexa 3. Compete 4. SimilarWeb ! SOCIAL 1. Facebook 2. Twitter 3. YouTube 4. Klout ! MOBILE 1. iTunes 2. Google Play OxfordTech.us | GA: Web Metrics l August 2014
  39. 39. 1. CASVENTURES KPIS + GOALS
  40. 40. BUSINESS KPI (RED) & UX (BLACK) Goals < VIDEO DISCOVERY OxfordTech.us | GA: Web Metrics l August 2014 < SOCIAL VISITS SEE < FULL VIDEOS < BRAND AWARENESS
  41. 41. Define Your Metrics KPIs Benchmarks should be similar by industry, sector & objective, BUT each project will differ EXAMPLES ECOMMERCE ARPU or RPV, R/T, R/V MARKETING CTR, VIEWS, CONVERSION RATE VIDEO TIME SPENT, # VIDEO VIEWED/VISIT, # REPEAT VISITS, UNIQUES PUBLISHING PV/V, V/UNIQUE, (TIME SPENT) AD-DRIVEN IMPRESSIONS, MONTHLY PVs, PV/V SOCIAL SHARES, LIKES, FAVES, FOLLOWS OxfordTech.us | GA: Web Metrics l August 2014
  42. 42. Quantify Your Goals 3+ SHORT VIDEOS/ SESSION ACROSS MULTIPLE SHOWS (VIDEO DISCOVERY) OxfordTech.us | GA: Web Metrics l August 2014 GET 30% TRAFFIC FROM SOCIAL
  43. 43. Translate into UX Characteristics < CONTENT DISCOVERY < BROWSE < SEARCH < AUTO-SUGGEST < NAVIGATION OxfordTech.us | GA: Web Metrics l August 2014 < SOCIAL ENGAGEMENT & SHARING TOOLS < SOCIAL WIDGETS
  44. 44. OxfordTech.us | GA: Web Metrics l August 2014 http://www.aguntherphotography.com/files/images/1833_large.jpg You Must Choose.
  45. 45. Consensus - Focus & Prioritize OxfordTech.us | GA: Web Metrics l August 2014
  46. 46. 2-3. CASVENTURES COMPETITOR METRICS ANALYSIS-DATA + CHARTS
  47. 47. Don’t Be Square. OxfordTech.us | GA: Web Metrics l August 2014 29
  48. 48. Competitive Metrics Analysis OxfordTech.us | GA: Web Metrics l August 2014
  49. 49. Time Spent (UX) OxfordTech.us | GA: Web Metrics l August 2014
  50. 50. Bounce Rate OxfordTech.us | GA: Web Metrics l August 2014
  51. 51. Pageviews vs. Time Spent OxfordTech.us | GA: Web Metrics l August 2014
  52. 52. Traffic (Visits) Over Time - All OxfordTech.us | GA: Web Metrics l August 2014
  53. 53. Traffic (Visits) Over Time - Subset Visits/Time OxfordTech.us | GA: Web Metrics l August 2014
  54. 54. Uniques/Time – 1 year (Subset) 30,000,000 22,500,000 15,000,000 7,500,000 0 Dec-­‐16 Jan-­‐17 Feb-­‐17 Mar-­‐17 Apr-­‐17 May-­‐17 Jun-­‐17 Jul-­‐17 Aug-­‐17 Sept-­‐17 Oct-­‐17 Nov-­‐17 OxfordTech.us | GA: Web Metrics l August 2014 Bleacher Report Vimeo TMZ Gawker The Onion History Comedy Central Discovery A&E Funny or Die Mashable Boing Boing Engadget TruTV DailyMoRon
  55. 55. Spreadsheet: Traffic Over Time 35 Competitors. Documented Source, Metric, Date Ranges, Date, Average Below: Uniques/mo over time OxfordTech.us | GA: Web Metrics l August 2014
  56. 56. Traffic (Visits) - Daily OxfordTech.us | GA: Web Metrics l August 2014
  57. 57. Linear vs. Log Scales OxfordTech.us | GA: Web Metrics l August 2014 http://blogs-­‐images.forbes.com/naomirobbins/files/2012/01/linear_log.jpg
  58. 58. Demographics- Age (averaged) OxfordTech.us | GA: Web Metrics l August 2014
  59. 59. Demographics- Age (with analysis) OxfordTech.us | GA: Web Metrics l August 2014
  60. 60. Demographics- Average Income OxfordTech.us | GA: Web Metrics l August 2014
  61. 61. Demographics- Income OxfordTech.us | GA: Web Metrics l August 2014
  62. 62. Demographics- Education (with analysis) OxfordTech.us | GA: Web Metrics l August 2014
  63. 63. Demographics- Education (computed ave) OxfordTech.us | GA: Web Metrics l August 2014
  64. 64. Spreadsheet: Demographics Averages OxfordTech.us | GA: Web Metrics l August 2014
  65. 65. App Ratings: Sentiment - Same Tactic Google Play, iTunes # Downloads, Ave Reviews (Below) OxfordTech.us | GA: Web Metrics l August 2014
  66. 66. Social- Same Tactic # Social Followers (manual tally) OxfordTech.us | GA: Web Metrics l August 2014
  67. 67. % Social Traffic OxfordTech.us | GA: Web Metrics l August 2014
  68. 68. All Traffic Sources OxfordTech.us | GA: Web Metrics l August 2014
  69. 69. 4. REVIEW FOR WEIRDNESS & CASVENTURES 5. ANALYZE FOR MEANING
  70. 70. Review the Data for Anomalies, Exceptions ▪ THINK HARD & CAREFULLY ▪ Cross-Check & Correlate ▪ Be able to defend ▪ Take special note of any warnings OxfordTech.us | GA: Web Metrics l August 2014
  71. 71. The Case of Netflix ▪ 700 Million monthly visits ▪ 260 Million monthly visits ▪ 126.5 Million weekly visits ▪ 80 Million weekly visits ▪ 10 Million daily visits ▪ 12 Million monthly visits ▪ 8 Million monthly uniques? OxfordTech.us | GA: Web Metrics l August 2014
  72. 72. How many trees? OxfordTech.us | GA: Web Metrics l August 2014 ?
  73. 73. Correlations: Scatterplots OxfordTech.us | GA: Web Metrics l August 2014
  74. 74. Finding Meaning….but Caution! OxfordTech.us | GA: Web Metrics l August 2014
  75. 75. Tell AND Show OxfordTech.us | GA: Web Metrics l August 2014
  76. 76. CASVENTUR6E.S COMPETITOR HEURISTIC ANALYSIS
  77. 77. OxfordTech.us | GA: Web Metrics l August 2014 Borrow from the Best h t tp: //i m a g e s 4 . fanpop.com/image/p h o to s / 14700000/S e e -n o - ev i l -h e a r-n o - ev i l - sp e a k-n o - ev i l -monkey s-14750406 -1600-1200. jpg
  78. 78. Competitor Evaluation OxfordTech.us | GA: Web Metrics l August 2014
  79. 79. Competitor Heuristic Evaluation ▪Deep-dive into high-performers- how & why ▪Correlated to the high-performing sites from metrics OxfordTech.us | GA: Web Metrics l August 2014
  80. 80. Competitor Heuristic Evaluation OxfordTech.us | GA: Web Metrics l August 2014
  81. 81. Try to find out the WHY behind the #s OxfordTech.us | GA: Web Metrics l August 2014
  82. 82. Quantify Your Heuristic Analysis Social Features Considered: • Easy to find content based on tagging? • Easy to follow/receive notification of upcoming shows? • User ratings or comments? • Save a show with login? • Easy to follow/watch/share on social media? ! Social-Top Features: • Clips organized by content tag • “Follow” content • Account profile with saved shows OxfordTech.us | GA: Web Metrics l August 2014
  83. 83. Quantify Your Heuristic Analysis Video Player-Best Experience: Hulu, CBS, MTV, Amazon Instant Video Video Player- Top characteristics include: • Episode/series description obvious to user • Previews, clips, and recommended content available under or next to player • Social Media sharing in player OxfordTech.us | GA: Web Metrics l August 2014
  84. 84. Topline: Overall Rank OxfordTech.us | GA: Web Metrics l August 2014
  85. 85. Actionable Takeaways (KPI focused) OxfordTech.us | GA: Web Metrics l August 2014
  86. 86. CASVENTUR7E.S INTERNAL METRICS ANALYSIS
  87. 87. Internal Metrics: A Deep Dive http://346fae7859434bda978f-­‐1902f231618c5697bb2c852c565827b8.r12.cf5.rackcdn.com/wp-­‐content/uploads/2014/02/diving1.jpg OxfordTech.us | GA: Web Metrics l August 2014
  88. 88. Internal Metrics Analysis OxfordTech.us | GA: Web Metrics l August 2014
  89. 89. Internal- Social Traffic Breakdown OxfordTech.us | GA: Web Metrics l August 2014
  90. 90. Traffic Sources - Internal vs. Public OxfordTech.us | GA: Web Metrics l August 2014
  91. 91. Key Internal Site Metrics- Top Sections OxfordTech.us | GA: Web Metrics l August 2014
  92. 92. Internal Site Metrics- Entry, Exit Points OxfordTech.us | GA: Web Metrics l August 2014
  93. 93. Internal Site Metrics- Paths Top Sections (Comscore) ! Top paths (Comscore) OxfordTech.us | GA: Web Metrics l August 2014
  94. 94. Internal Clickpaths Click path Analysis from Homepage OxfordTech.us | GA: Web Metrics l August 2014
  95. 95. Key Internal Site Metrics Over Time OxfordTech.us | GA: Web Metrics l August 2014
  96. 96. Internal Site Metrics – Cohort Analysis ▪ Lean Startup / Agile technique ▪ Tracks KPIs per sprint/ at fixed time blocks to evaluate if there are improvements from new product releases http://idea-stack.blogspot.com/2013/04/quick-hack-setting-up-cohort-analysis.html OxfordTech.us | GA: Web Metrics l August 2014
  97. 97. Internal Site Metrics- Mobile vs. Desktop Web vs. mobile activity by Site Section OxfordTech.us | GA: Web Metrics l August 2014
  98. 98. Demographics- More Detailed + Accurate OxfordTech.us | GA: Web Metrics l August 2014
  99. 99. Demographics- New Information OxfordTech.us | GA: Web Metrics l August 2014
  100. 100. Demographics: Audience Definition OxfordTech.us | Web Metrics l July 2014
  101. 101. Internal Site Metrics- Design Data OxfordTech.us | GA: Web Metrics l August 2014
  102. 102. Internal Site Metrics- Device Data OxfordTech.us | GA: Web Metrics l August 2014
  103. 103. CASVENTUR8E.S INTERNAL HEURISTIC PRODUCT ANALYSIS
  104. 104. Internal Heuristic Evaluation OxfordTech.us | GA: Web Metrics l August 2014
  105. 105. Internal Heuristic, Focused on Key KPIs OxfordTech.us | GA: Web Metrics l August 2014
  106. 106. Internal Heuristic- Deep Dive on Key Pages OxfordTech.us | GA: Web Metrics l August 2014
  107. 107. Heuristic- Navigation vs. Metrics Paths OxfordTech.us | GA: Web Metrics l August 2014
  108. 108. 9. CASVENTURES THE SEXY PART: THE FINDINGS
  109. 109. SEXY IT UP! OxfordTech.us | GA: Web Metrics l August 2014 http://tng.trekcore.com/hd/albums/1x13/datalore_hd_027.jpg
  110. 110. Snoozeville OxfordTech.us | GA: Web Metrics l August 2014 http://m.cdn.blog.hu/in/investo/image/Robot.jpg http://cailincreature.blogspot.com/2010_06_01_archive.html
  111. 111. Don’t Make Me Think! OxfordTech.us | GA: Web Metrics l August 2014 http://cailincreature.blogspot.com/2010_06_01_archive.html
  112. 112. Risk of Wrong Conclusions OxfordTech.us | GA: Web Metrics l August 2014 http://cailincreature.blogspot.com/2010_06_01_archive.html
  113. 113. The path forward - based on data OxfordTech.us | GA: Web Metrics l August 2014 http://m.cdn.blog.hu/in/investo/image/Robot.jpg
  114. 114. KPI Impact is SEXY $ :-) OxfordTech.us | GA: Web Metrics l August 2014
  115. 115. Analogy: UX Awards Youtube.com/UXAwards OxfordTech.us | GA: Web Metrics l August 2014
  116. 116. CASVENTU1R0E.S FOCUSED IDEATION
  117. 117. New UX Ideation Guided By KPIs, Metrics UX GOALS BASED ON PRODUCT KPIS - BUSINESS: Increase # full video views/session (with prerolls) - USER: Find & watch videos, fast (in under N clicks/ X seconds) http://www.sonicftp.com/news/images/guitarstorage_carousel.jpg OxfordTech.us | GA: Web Metrics l August 2014
  118. 118. Example UX Ideation ENGAGEMENT KPIS - # Video Views ! IDEATION: CONTENT DISCOVERY - What are all the ways to browse or find similar content? - What are all the ways to discover new content? - “What if”….? - What are successful competitors / “admirables” doing? - Offline analogies? http://www.sonicftp.com/news/images/guitarstorage_carousel.jpg OxfordTech.us | GA: Web Metrics l August 2014
  119. 119. Seeking Inspiration Offline OFFLINE SHOPPERS: BROWSE BY BRAND OR FUNCTIONALITY ONLINE: BY SHOW, ACTOR, CHARACTER OR GENRE, LENGTH thefashionspot.OxfordTech.us com/| GA: shop/Web 364135-Metrics boutique-l August of-the-2014 week-the-chanel-shop-at-bergdorf-goodman/
  120. 120. Brainstorming to Solve KPI Problems OxfordTech.us | Web Metrics l July 2014
  121. 121. Getting Creative- Summary ▪ ASK “WHAT IF” / “WHAT ARE” - FROM KPIS & TARGET ACTIONS ▪ LIST ALL THE POSSIBLE OPTIONS ▪ CONSIDER RELEVANCE LAST OxfordTech.us | GA: Web Metrics l August 2014 http://openclipart.org/image/2400px/svg_to_png/185271/ico_light_bulb_2.png
  122. 122. KPIs, Goals Can Conflict (UX must Solve) Final direction may need to balance competing needs ! Ecommerce ▪ Business: maximum revenue/ visitor or /transaction ▪ Customer: cheapest, best option that’s found the most easily (least clicks & time on site before transaction) Publishing (ad-driven) ▪ Business: maximum ad impressions & PVs/visit ▪ Visitor: least ads, clicks & PVs to find & consume desired content OxfordTech.us | Web Metrics l July 2014
  123. 123. CASVENTU1R1E.S PROTOTYPE, TEST, ITERATE (REPEAT)
  124. 124. Testing & Iterating Your Concepts GET FEEDBACK BY TESTING BEFORE DEV. ▪Clickable Prototypes ▪MVT - Landing Pages USE METRICS TO EVALUATE LAUNCHED FEATURES http://www.matraxis.co.uk/services/ab-multivariate-testing/ OxfordTech.us | GA: Web Metrics l August 2014
  125. 125. Testing & Iterating Your Concepts OxfordTech.us | GA: Web Metrics l August 2014 ANDREW MCKINNEY! http://andrewmckinney.com/projects/weight-watchers-iphone-app/
  126. 126. Review of the 11 Steps 1. Identify key sites, goals & KPIs ! 2. Get competitor metrics data from multiple sources 3. Graph data after standardizing in Excel 4. Check for oddities 5. Don’t be a Robot. Review, Analyze & THINK ! 6. Examine High Performers (Heuristic, Quantified) ! 7. Analyze Internal Site Metrics 8. Review Internal Site (Heuristic, also Quantified) ! 9. Generate Actionable Findings inside a narrative 10. Concept New Directions 11. Test & Iterate OxfordTech.us | GA: Web Metrics l August 2014
  127. 127. TOP 10 NEWBIE ANALYSIS CASVENTURES MISTAKES
  128. 128. Top 10 Newbie Metrics Mistakes 1. Not knowing what to look for, based on business & user goals 2. Using the wrong metrics & KPIs for the job 3. Believing any metrics are accurate – esp. public web 4. Being a robot. Think and be skeptical 5. Comparing across different time ranges 6. Using only 1 short time period; forgetting seasonality/ trends 7. Comparing across different sources with different names 8. Comparing internal to public metrics (correlation, not exact) 9. Not understanding why bad sites have good metrics. 10. Not asking WHY or HOW DON’T BE A ROBOT. http://m.cdn.blog.hu/in/investo/image/Robot.jpg OxfordTech.us | GA: Web Metrics l August 2014
  129. 129. Using the Wrong Metrics OxfordTech.us | GA: Web Metrics l August 2014 http://www.clker.com/clipart-10628.html
  130. 130. Consider Seasonality OxfordTech.us | GA: Web Metrics l August 2014 http://linkoroo.com/fun.php?funid=518&funname=Winter-Trees
  131. 131. When Good #s Are Bad. HIGH ENGAGEMENT CAN BE FROM TERRIBLE UX. Poor usability can lead to high PV/u, Time Spent, Deep & wide clickpaths OxfordTech.us | GA: Web Metrics l August 2014 http://www.1800attorney.com/
  132. 132. Humans > Data OxfordTech.us | GA: Web Metrics l August 2014
  133. 133. SCUASMVEMNTAURRYES
  134. 134. Steps OxfordTech.us | GA: Web Metrics l August 2014 http://m.cdn.blog.hu/in/investo/image/Robot.jpg 1. Identify key sites & KPIs 2. Get data from multiple sources 3. Graph it 4. Check for oddities 5. Don’t be a Robot. Review, Analyze & THINK 6. Examine High Performers (Heuristic, Quantified) 7. Analyze Internal Site Metrics 8. Review Internal Site (Heuristic) 9. Generate Actionable Findings 10. Concept New Directions 11. Test & Iterate
  135. 135. Web Metrics Are NOT… ▪Accurate ! ▪Absolutes ! ▪Useful when quoted in isolation or without analysis ! ▪Useful without understanding the project & context OxfordTech.us | GA: Web Metrics l August 2014
  136. 136. Theory of Relativity OxfordTech.us | GA: Web Metrics l August 2014 chican-izmo.blogspot.com/2010/06/if-tree-falls-in-forest.html
  137. 137. Web Metrics Are… ▪Useful approximate data points ! ▪Fantastic for ALL STAGES OF UX ! ▪A means to get UX out of the gallery of opinions by quantifying the value of UX based on performance ! ▪ A way to pinpoint top competitors for further review, ideas ! ▪Great to narrow product goals & engagement KPIs ! ▪Helpful with ideation through goal-focused brainstorming ! ▪ A means to improve performance through multivariate testing OxfordTech.us | GA: Web Metrics l August 2014
  138. 138. SEXY OxfordTech.us | GA: Web Metrics l August 2014
  139. 139. OxfordTech.us | GA: Web Metrics l August 2014 Show AND Tell the Story lorenweisman.com/2013/06/21/music-marketing-plan/music-marketing-plan-storytime-artists-guide-show-and-tell/
  140. 140. Metrics Help Guarantee Success! OxfordTech.us | GA: Web Metrics l August 2014
  141. 141. ?
  142. 142. BREAK THANKS! ! ! Bev May Beverly@OxfordTech.us @OxfordTech OxfordTech.us @UXAwards UXAwards.org
  143. 143. PART II: YOUR TURN! METRICS WORKSHOP ! ! Bev May Beverly@OxfordTech.us @OxfordTech OxfordTech.us @UXAwards UXAwards.org
  144. 144. SUMMARY OCAFS VPEANTRUTR EIS
  145. 145. Steps OxfordTech.us | GA: Web Metrics l August 2014 http://m.cdn.blog.hu/in/investo/image/Robot.jpg 1. Identify key sites & KPIs 2. Get data from multiple sources 3. Graph it 4. Check for oddities 5. Don’t be a Robot. Review, Analyze & THINK 6. Examine High Performers (Heuristic, Quantified) 7. Analyze Internal Site Metrics 8. Review Internal Site (Heuristic) 9. Generate Actionable Findings 10. Concept New Directions 11. Test & Iterate
  146. 146. Web Metrics Are NOT… ▪Accurate ! ▪Absolutes ! ▪Useful when quoted in isolation or without analysis ! ▪Useful without understanding the project & context OxfordTech.us | GA: Web Metrics l August 2014
  147. 147. Theory of Relativity OxfordTech.us | GA: Web Metrics l August 2014 chican-izmo.blogspot.com/2010/06/if-tree-falls-in-forest.html
  148. 148. Web Metrics Are… ▪Useful approximate data points ! ▪Fantastic for ALL STAGES OF UX ! ▪A means to get UX out of the gallery of opinions by quantifying the value of UX based on performance ! ▪ A way to pinpoint top competitors for further review, ideas ! ▪Great to narrow product goals & engagement KPIs ! ▪Helpful with ideation through goal-focused brainstorming ! ▪ A means to improve performance through multivariate testing OxfordTech.us | GA: Web Metrics l August 2014
  149. 149. SEXY OxfordTech.us | GA: Web Metrics l August 2014
  150. 150. OxfordTech.us | GA: Web Metrics l August 2014 Show AND Tell the Story lorenweisman.com/2013/06/21/music-marketing-plan/music-marketing-plan-storytime-artists-guide-show-and-tell/
  151. 151. Metrics Help Guarantee Success! OxfordTech.us | GA: Web Metrics l August 2014
  152. 152. Q&A: DATA VISUALIZATION CASVENTURES CHOICES
  153. 153. Which to use? Education Level (internal) - 4 different levels ? OxfordTech.us | GA: Web Metrics l August 2014
  154. 154. Which to use? Single Source %s Education Level (internal) OxfordTech.us | GA: Web Metrics l August 2014
  155. 155. Which to use? % MALE vs. FEMALE (External Comparison) ? OxfordTech.us | GA: Web Metrics l August 2014
  156. 156. Which to use? Amounts & Rank % MALE vs. FEMALE (External Comparison) OxfordTech.us | GA: Web Metrics l August 2014
  157. 157. Trendlines + Simplicity % MALE vs. FEMALE (External Comparison) OxfordTech.us | GA: Web Metrics l August 2014
  158. 158. Which to use? Trends over time on multiple sites ? OxfordTech.us | GA: Web Metrics l August 2014
  159. 159. Which to use? Trends over Time Traffic over time OxfordTech.us | GA: Web Metrics l August 2014
  160. 160. Which to use? Gender vs. Traffic (Correlation) ? OxfordTech.us | GA: Web Metrics l August 2014
  161. 161. Which to use? Correlations Gender vs. Traffic OxfordTech.us | GA: Web Metrics l August 2014
  162. 162. DATA DOWNLOAD & CASVENTURES ANALYSIS
  163. 163. Process Steps We’ll Do Today 1. Identify key sites, goals & KPIs 2. Get competitor metrics data from multiple OxfordTech.us | GA: Web Metrics l August 2014 http://m.cdn.blog.hu/in/investo/image/Robot.jpg sources 3. Graph data after standardizing in Excel 4. Check for oddities 5. Don’t be a Robot. Review, Analyze & THINK 6. If Time- Examine High Performers (Heuristic, Quantified) 7. Analyze Internal Site Metrics 8. Review Internal Site (Heuristic) 9. Generate Actionable Findings 10. Concept New Directions 11. Test & Iterate
  164. 164. Workshop Agenda 1. Form Teams 2. Define Project KPIs 3. Web Metrics- Download & Graph 4. Find Analysis & Meaning 5. Share Findings 6. (If Time) KPI-Focused Competitive Analysis 7. Resources + Q&A OxfordTech.us | GA: Web Metrics l August 2014
  165. 165. Form Teams ▪ Teams of 2-4 ▪ BUT RECOMMEND EVERYONE DOES THE WORK (IN PARALLEL) ▪ Introduce yourself to your teams! NEEDS: ▪ Computer with Excel / Spreadsheet Program for data work ▪ Choose a Web-Based Sector – with established metrics ▪ 5 Competitors / Comparables (known, large sites only) ▪ Default sectors to research if you don’t have any: Publishing or Video OxfordTech.us | GA: Web Metrics l August 2014
  166. 166. 1. KPIs & Goals (Strategy)- 5-10 Mins ▪ Define Business Strategy (Revenue Model) & Business KPIS ▪ Define User Goals & Priorities ▪ Translate into UX Features, Goals ▪ Define Evaluative Metrics KPIs & Goals ▪ PICK 2-3 KEY WEB METRICS TO RESEARCH ▪ Sector & Sub-Sector ▪ Comparables ▪ “Admirables” ▪ PICK 5 SITES OxfordTech.us | GA: Web Metrics l August 2014
  167. 167. BUSINESS (RED), USER (GREY) & UX (BLACK) < VIDEO DISCOVERY OxfordTech.us | GA: Web Metrics l August 2014 < SOCIAL VISITS SEE < FULL (PAID) VIDEOS < BRAND AWARENESS FIND + WATCH TOP FREE CLIPS EASILY SHARE WITH FRIENDS
  168. 168. Define Your Evaluative Metrics KPIs Benchmarks should be similar by industry, sector & objective EXAMPLES ECOMMERCE ARPU or RPV, R/T, R/V MARKETING CTR, VIEWS, CONVERSION RATE VIDEO TIME SPENT, # VIDEOS VIEWED/VISIT PUBLISHING PV/V, V/UNIQUE, (TIME SPENT) AD-DRIVEN IMPRESSIONS, MONTHLY PVs, PV/V SOCIAL SHARES, LIKES, FAVES, FOLLOWS OxfordTech.us | GA: Web Metrics l August 2014
  169. 169. Translate into Key UX Characteristics < CONTENT DISCOVERY < BROWSE < SEARCH < AUTO-SUGGEST < NAVIGATION OxfordTech.us | GA: Web Metrics l August 2014 < SOCIAL ENGAGEMENT & SHARING TOOLS < SOCIAL WIDGETS
  170. 170. (Quantify Your Goals) 3+ SHORT VIDEOS/ SESSION ACROSS MULTIPLE SHOWS (VIDEO DISCOVERY) OxfordTech.us | GA: Web Metrics l August 2014 GET 30% TRAFFIC FROM SOCIAL
  171. 171. KPIs & Goals (Strategy)- Share! OxfordTech.us | GA: Web Metrics l August 2014
  172. 172. 2. Get Competitor Data into a Spreadsheet ▪ Download/ manually transcribe from many sources- never just one ▪ ALEXA: http://www.alexa.com/siteinfo/nameofsite.com ▪ COMPETE: https://siteanalytics.compete.com/nameofsite.com ▪ QUANTCAST: https://www.quantcast.com/nameofsite.com ▪ SIMILARWEB: http://www.similarweb.com/website/nameofsite.com OxfordTech.us | GA: Web Metrics l August 2014
  173. 173. 2. Get Data, Put Into Spreadsheet TODAY AS A GROUP- WEB METRICS • Time Spent – Engagement (Bar Chart) • Bounce Rate • Demographics-Gender – Audience (Bar Chart, Pie Chart) • Unique Visitors over Time – Popularity (Line Graphs) • Comparisons- Bounce Rate • Your KPIs • Scatterplot Comparisons OxfordTech.us | GA: Web Metrics l August 2014
  174. 174. A. Time Spent on Site- Alexa – 5M http://www.alexa.com/siteinfo/nameofsite.com ▪ Make a new spreadsheet with companies as column A and column B labeled “time spent”/”minutes on site” ▪ Enter data from Alexa in column B. ▪ Mark date range, source, URL for your data (click ? - trailing 3 mo) OxfordTech.us | GA: Web Metrics l August 2014
  175. 175. A. Time Spent- Graph ▪ Select all and sort by column B ▪ Select data, then choose Insert > Column Chart while Data is selected. OxfordTech.us | GA: Web Metrics l August 2014
  176. 176. So What? OxfordTech.us | GA: Web Metrics l August 2014
  177. 177. B. Bounce Rate- Alexa http://www.alexa.com/siteinfo/nameofsite.com ▪ Make a new chart tab with same companies as column A and column B “Bounce” - under a new tab (copy chart, delete rows 2 on) ▪ Enter data on % Bounce in column B as a whole # (“78” for 78%) ▪ Mark date range, source, URL for your data (click ? - trailing 3 mo) OxfordTech.us | GA: Web Metrics l August 2014
  178. 178. B. Bounce Rate- Graph & Analyze ▪ Select all and sort by column B ▪ Select data, then choose Insert > Column Chart while Data is selected. ▪ Is this a problem? ▪ ASK WHY?? OxfordTech.us | GA: Web Metrics l August 2014
  179. 179. C. Traffic Sources- SimilarWeb – 5M http://www.similarweb.com/website/nameofsite.com ▪ Make a new chart tab with same companies as column A and column B “Social” - under a new tab (copy chart, delete rows 2 on) ▪ Enter data on % Social in column B as a whole # (“78” for 78%) ▪ (Add other columns for other traffic types. Label each column) ! ! OxfordTech.us | GA: Web Metrics l August 2014
  180. 180. C. Traffic Sources-% Social ▪ Select all and sort by column B ▪ Select all data, then choose Insert > Column Chart while Data is selected. ! ! OxfordTech.us | GA: Web Metrics l August 2014
  181. 181. D. Demographics- Quantcast – 5M https://www.quantcast.com/nameofsite.com ▪ Use Quantcast on quantified sites. Mark date range, source, URL ▪ Examples: A&E (Aetv.com - partial), Bleacher Report, TMZ, Gawker, The Onion, Quantcast.com ▪ Gender tab (not gender “Index”) ▪ Make a new chart with same companies as first tab- under a new tab (copy chart, delete rows 2 on) ▪ Enter data on % Male in column B as a whole # (“78” for 78%) ▪ Do the same for Female in column C ! ! Site X OxfordTech.us | GA: Web Metrics l August 2014
  182. 182. D. Quantcast - when there’s Data ▪ Go to https://www.quantcast.com/nameofsite.com OxfordTech.us | GA: Web Metrics l August 2014
  183. 183. D. Demographics- Gender- Alexa ▪ Pro: Available free. Con: Relative Rank #s ▪ Can get real #s for $50/mo ▪ If don’t want to pay and just want to get comparisons- can assign numeric estimates to Alexa bars, assuming linear scale (-5 to +5) ! OxfordTech.us | GA: Web Metrics l August 2014
  184. 184. D. Demographics- Gender ▪ Select all and sort by column B ▪ Select all data, then choose Insert > Column Chart while Data is selected. OxfordTech.us | GA: Web Metrics l August 2014
  185. 185. D. Demographics- Gender -Alt View Always consider the best visualization of data OxfordTech.us | GA: Web Metrics l August 2014
  186. 186. D. Demographics- Gender (Single Site) Always consider the best visualization of data OxfordTech.us | GA: Web Metrics l August 2014
  187. 187. E. Uniques over Time- Compete – 5 M ▪ https://siteanalytics.compete.com/nameofsite.com ▪ 6 Month Tab. Mouseover Dots. ▪ Make a new tab with same companies as column A and columns B-G each a month - under a new tab (copy chart, delete rows B on) ▪ Manually Enter Uniques Data into columns B-G ▪ Column H: mark a column for Average OxfordTech.us | GA: Web Metrics l August 2014
  188. 188. E. Uniques over Time Spreadsheet ▪ First Column: Sites. Columns B-G: 6 Months data as #s with labels ▪ Mark the date range, source, URL for your data ▪ Add an AVERAGES column on right. Leave blank for now OxfordTech.us | GA: Web Metrics l August 2014
  189. 189. E. Uniques over Time- Graph! – 5 M ▪ For 5 Sites & 6 Months- Select cells 1A-6G (include months, names of sites and numbers, but excluding average column) ▪ Choose Insert > Line Chart while Data is selected. ▪ Right-Click on the new chart. Choose “Select Data” ▪ Click “Switch Row/ Column”, then OK (“Plot Rows as Series” on Mac) OxfordTech.us | GA: Web Metrics l August 2014
  190. 190. E. Uniques- Outliers ▪ Sometimes Excluding Data in Graph Can Reveal More Detail OxfordTech.us | GA: Web Metrics l August 2014
  191. 191. E. Bounce Rate alternate- Similarweb -5M ▪ http://www.similarweb.com/website/nameofsite.com ▪ Open up original Bounce Rate Tab ▪ Use to compare against Alexa- find anomalies ▪ Add 1 more Column- Enter Alexa Data (and note source!) ▪ Sort by both columns OxfordTech.us | GA: Web Metrics l August 2014
  192. 192. E. Bounce- compare – 5 M ▪ Eyeball for major differences in Data ▪ Do a double graph of both values (Insert > Chart - bar chart) ▪ Anything interesting? OxfordTech.us | GA: Web Metrics l August 2014
  193. 193. F. Your KPIs - Download, Graph in a new tab ▪ Download/ manually transcribe some other interesting data points ▪ Ex: Bounce Rate, Page Views, Visits/Unique ▪ ALEXA: http://www.alexa.com/siteinfo/nameofsite.com ▪ COMPETE: https://siteanalytics.compete.com/nameofsite.com ▪ QUANTCAST: https://www.quantcast.com/nameofsite.com ▪ SIMILARWEB: http://www.similarweb.com/website/nameofsite.com OxfordTech.us | GA: Web Metrics l August 2014
  194. 194. BREAK THANKS! ! ! Bev May Beverly@OxfordTech.us @OxfordTech OxfordTech.us @UXAwards UXAwards.org
  195. 195. Review, Analyze & Think! ▪ DON’T BE A ROBOT. ▪ Does the data make sense? ▪ Do the metrics match up across sources? ▪ Double check anything suspicious. ▪ Note anomalies http://m.cdn.blog.hu/in/investo/image/Robot.jpg OxfordTech.us | GA: Web Metrics l August 2014
  196. 196. Unlock the SEXY. Write relevance for UX OxfordTech.us | GA: Web Metrics l August 2014
  197. 197. Scatterplot- Find Patterns – 10 M ▪ Use your data for % social vs. Age or any other point to form a scatter ▪ Make a new tab, copying over all of the % Social Data ▪ Sort by Site Name (column A) ▪ Go to Age tab, sort by Site Name (col A), then copy Column B data ▪ Go back to new Scatter tab, paste in Age data in Column C ▪ Make sure both tabs were sorted by name first to match the data OxfordTech.us | GA: Web Metrics l August 2014
  198. 198. Scatterplot- Look for Patterns ▪ After sorting, choose 2 columns of just the data- not labels ▪ Sort data by one column (or both) ▪ Insert Scatterplot ▪ May need to invert to plot X:Y instead of Y:X (edit chart data > plot rows/ columns as series in lower left on a Mac; on a PC, invert plot) ▪ Add labels to graph, cross-check graph values OxfordTech.us | GA: Web Metrics l August 2014
  199. 199. Scatterplot- Any Patterns? Make More! ▪ Won’t always get interesting results…. make more! OxfordTech.us | GA: Web Metrics l August 2014
  200. 200. Scatterplot- Correlation vs. Causation ▪ ASK WHY? ▪ Be careful with your conclusions ▪ Regression analysis ▪ Consider alternate reasons OxfordTech.us | GA: Web Metrics l August 2014
  201. 201. Review & Have Details Documented ▪ Document in Excel & Presentations ▪ Sources ▪ Date ranges- exact ▪ Date data was obtained ▪ Name of metric ▪ Source URLs OxfordTech.us | GA: Web Metrics l August 2014
  202. 202. SHARE YOUR CASVENTURES RESULTS!
  203. 203. EXAMINE TOP PERFORMERS CASVENTURES
  204. 204. If Time: Examine top Performers & ask… HOW? OxfordTech.us | GA: Web Metrics l August 2014 http://openclipart.org/image/2400px/svg_to_png/185271/ico_light_bulb_2.png
  205. 205. Asking How- Documenting ▪ Work in Teams ▪ Define “success metrics” & KPIs before examining ! ▪ Take Screenshots ▪ Make notes on pages & note URLs ▪ See what’s similar/ different across sites ▪ See what stands out ▪ Form hypotheses on how/ why OxfordTech.us | GA: Web Metrics l August 2014
  206. 206. “Quantifying” your Approach ▪ Define “success metrics” & KPIs and features/approaches that support them ▪ Rank competitors based on those features/ approaches ▪ Graph your results OxfordTech.us | GA: Web Metrics l August 2014
  207. 207. SHARE YOUR CASVENTURES RESULTS!
  208. 208. RECSAOSVUENRTCUERESS
  209. 209. Some Public Web Metrics Sources ▪Quantcast ▪Compete ▪Alexa ▪SimilarWeb ▪Comscore (Paid) OxfordTech.us | GA: Web Metrics l August 2014
  210. 210. Some Private Internal Tools More accurate, but requires developer implementation & unlikely to provide competitive insights ! ▪Google Analytics (free) ▪ Yahoo! Analytics (free) ▪ Coremetrics ▪Omniture ▪WebTrends ▪ Adobe Site Catalyst ▪ Piwik, Spring, Woopra, Clicky, Mint, Unica, HitsLink, OneStat, GoStats, NextStat, WebTrekk, Fireclick, AWStats, GoSquared, Firestats, SiteMeter, Mixpanel, Foxmetrics, HisStats, Reinvigorate, Open Web Analytics OxfordTech.us | GA: Web Metrics l August 2014 inviteads.com/wp-content/uploads/2013/07/Heatmap.jpg
  211. 211. Other On-Site Metrics Tools ▪ Optimize.ly – MVT & A/B Testing ▪ Chartbeat – Real-Time Data ▪ Kiss Metrics – Patterns over Time/ Click path ▪ Unbounce, Launchrock – Landing Page MVT ▪ Google Web Optimizer ▪ Clicktale, Crazy Egg –Heatmaps ▪ Google or Bing Webmaster Tools – SEO ▪ Experian Hitwise: Demographics ▪ Online testing: Loop11, UserTesting, KissInsights ▪ More: InspectLet, GoingUp, eTracker, Grape Webstats, AT Internet, IBM NetInsight, Webalyzer, StatCounter, BBClone, Piwik, Stuffed Tracker en.wikipedia.org/wiki/Web_analytics OxfordTech.us | GA: Web Metrics l August 2014
  212. 212. Social Tools ▪ Twitalyzer ▪ Facebook Insights- Likes, Talking About, Engagement Rate ▪ Klout (not recommended) ▪ Topsy- what’s shared ▪ Sprout Social ▪Google Analytics- Social ▪Oracle Social ▪ Attensity OxfordTech.us | GA: Web Metrics l August 2014 mikefrancois.net/wp-content/uploads/2011/01/LinkedIn-Map1.png
  213. 213. Mobile Tools (for Native Apps) ▪ iTunes ▪Google Play ▪Crittercism ▪Mobile App Tracking ▪WebTrekk ▪ Ad-X ▪ Fiksu ▪ LinkShare ▪ Flurry ▪ InMobi OxfordTech.us | GA: Web Metrics l August 2014 mikefrancois.net/wp-content/uploads/2011/01/LinkedIn-Map1.png
  214. 214. ?
  215. 215. UX + WEB METRICS How to Benchmark, Measure & Evaluate UX Impact General Assembly August 03, 2014 THANKS! ! ! Bev May Beverly@OxfordTech.us @OxfordTech OxfordTech.us @UXAwards UXAwards.org

×