BRANDON J. THOMAS
PH.D. CANDIDATE
SAINT LOUIS UNIVERSITY
Use of Nanomaterials for Energetic Applications

I.  Piezoelectri...
Nanotubes	
  

Nanorods	
  

Nanomaterials	
  
Size:	
  1-­‐100	
  nm	
  

Nanosheets	
  

Nanopar5cles	
  

Nanowires	
  
CARBON-BASED NANOMATERIALS
Carbon Nanotubes

Graphene

Buckminsterfullerene, C60
Size	
  Control	
  

Shape	
  Control	
  

REACTIVITY	
  
Piezoelectric	
  Effect	
  
Voltage	
  ßà	
  Strain	
  

Qin,	
  Y.;	
  Wang,	
  X.;	
  Wang,	
  Z.	
  L.	
  Nature	
  
2...
PIEZOELECTRIC APPLICATIONS

Wang, Z. L. Adv. Funct. Mater. 2008, 18, 3553–3567.
Supercapacitors

Halper,	
  M.	
  S.;	
  Ellenbogen,	
  J.	
  C.	
  Report	
  No.	
  MP	
  05W0000272,	
  The	
  MITRE	
  ...
SUPERCAPACITOR
•  Nano-enabled
electrodes
•  Graphene
•  Carbon nanotubes
(CNTs)

http://www.dataweek.co.za/news.aspx?pkln...
Reactive metal nanomaterials
Al (s) + O2 (g) à Al2O3 (s)

Thermite

Al(s) + H2O(l) à Al(OH)3(s) + H2(g)

H2 production/
...
Nano Al reaction
HYDROGEN PRODUCTION

http://www.youtube.com/watch?v=hykAr0Lhz04, CE Bunker, AFRL
Hydrogen as a Fuel
H2 (g)+ O2 (g) à H2O (l)

http://butane.chem.uiuc.edu/pshapley/Enlist/Labs/FuelCellLab/FuelCell.html
HYDROGEN IS DANGEROUS!
HYDROGEN STORAGE

Mg nanoblades decorated with Pd NPs
Liu, Y.; Chen, L.; Lu, T. M.; Wang, G. C. Int. J. Hydrogen Energ. 20...
COMPLEX METAL HYDRIDES

Niemann, M. U.; Srinivasan, S. S.; Phani, A. R.; Kumar, A.; Goswami, D. Y.; Stefanakos, E. K. J.
N...
REVERSIBLE HYDROGEN STORAGE – LI3ALH6

Thomas, B.J.; Bunker, C.E.; Guliants, E.A.; Buckner, S.W.; Jelliss, P.A. Chem. Comm...
Patel, A.; Bunker, C. E.; Guliants, E. A.; Jelliss, P. A.; Buckner, S. W. CRC Press, 2013; Vol. 1, pp.
366–369.
Solar Cells – Photovoltaic Effect

Forvision	
  smart	
  car,	
  BASF	
  

hYp://www.solarnovus.com/ar5cle.php?nID=937	
  ...
InP NW array – 13.8% efficiency

Wallentin, J. et al. Science 2013, 339, 1057−1060.
SUMMARY
Energy Conversion
Mechanical
Chemical
Solar

Nanomaterials
Size: 1-100 nm

ELECTRICAL
ENERGY

Nanogenerators
Solar...
Upcoming SlideShare
Loading in …5
×

Brandon Thomas -- Disruptive Diner: Nano Possibilities

270 views

Published on

Presentation and discussion from 10/15/13 on opportunities to generate, store, distribute and use energy via nanotechnology. Brandon Thomas, graduate researcher at St. Louis University presented with a focus on dramatically increasing efficiency, safety, and power via nano energy. Join OpenlyDisruptive.org for live access to more disruptive innovation events.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
270
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Brandon Thomas -- Disruptive Diner: Nano Possibilities

  1. 1. BRANDON J. THOMAS PH.D. CANDIDATE SAINT LOUIS UNIVERSITY Use of Nanomaterials for Energetic Applications I.  Piezoelectrics II.  Supercapacitors III.  Reactive Materials IV.  Solar Cells
  2. 2. Nanotubes   Nanorods   Nanomaterials   Size:  1-­‐100  nm   Nanosheets   Nanopar5cles   Nanowires  
  3. 3. CARBON-BASED NANOMATERIALS Carbon Nanotubes Graphene Buckminsterfullerene, C60
  4. 4. Size  Control   Shape  Control   REACTIVITY  
  5. 5. Piezoelectric  Effect   Voltage  ßà  Strain   Qin,  Y.;  Wang,  X.;  Wang,  Z.  L.  Nature   2008,  451,  809–813.  
  6. 6. PIEZOELECTRIC APPLICATIONS Wang, Z. L. Adv. Funct. Mater. 2008, 18, 3553–3567.
  7. 7. Supercapacitors Halper,  M.  S.;  Ellenbogen,  J.  C.  Report  No.  MP  05W0000272,  The  MITRE  Corpora5on,   McLean,  Virginia  2006.  
  8. 8. SUPERCAPACITOR •  Nano-enabled electrodes •  Graphene •  Carbon nanotubes (CNTs) http://www.dataweek.co.za/news.aspx?pklnewsid=23918
  9. 9. Reactive metal nanomaterials Al (s) + O2 (g) à Al2O3 (s) Thermite Al(s) + H2O(l) à Al(OH)3(s) + H2(g) H2 production/ storage Fuels
  10. 10. Nano Al reaction
  11. 11. HYDROGEN PRODUCTION http://www.youtube.com/watch?v=hykAr0Lhz04, CE Bunker, AFRL
  12. 12. Hydrogen as a Fuel H2 (g)+ O2 (g) à H2O (l) http://butane.chem.uiuc.edu/pshapley/Enlist/Labs/FuelCellLab/FuelCell.html
  13. 13. HYDROGEN IS DANGEROUS!
  14. 14. HYDROGEN STORAGE Mg nanoblades decorated with Pd NPs Liu, Y.; Chen, L.; Lu, T. M.; Wang, G. C. Int. J. Hydrogen Energ. 2011, 36, 11752–11759.
  15. 15. COMPLEX METAL HYDRIDES Niemann, M. U.; Srinivasan, S. S.; Phani, A. R.; Kumar, A.; Goswami, D. Y.; Stefanakos, E. K. J. Nano. Mat. 2008, 1–9.
  16. 16. REVERSIBLE HYDROGEN STORAGE – LI3ALH6 Thomas, B.J.; Bunker, C.E.; Guliants, E.A.; Buckner, S.W.; Jelliss, P.A. Chem. Commun. 2013, submitted.
  17. 17. Patel, A.; Bunker, C. E.; Guliants, E. A.; Jelliss, P. A.; Buckner, S. W. CRC Press, 2013; Vol. 1, pp. 366–369.
  18. 18. Solar Cells – Photovoltaic Effect Forvision  smart  car,  BASF   hYp://www.solarnovus.com/ar5cle.php?nID=937    
  19. 19. InP NW array – 13.8% efficiency Wallentin, J. et al. Science 2013, 339, 1057−1060.
  20. 20. SUMMARY Energy Conversion Mechanical Chemical Solar Nanomaterials Size: 1-100 nm ELECTRICAL ENERGY Nanogenerators Solar Cells Fuel Cells Supercapacitors

×