
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
Gaussian states and Gaussian transformations represent an interesting counterpart to twolevel photonic systems in the field of quantum information processing. On the theoretical side, Gaussian states are easily described using first and second moments of the quadrature operators; from the experimental point of view, Gaussian operations can be implemented using linear optics and optical parametric amplifiers. The biggest advantage compared to twolevel photonic systems, is deterministic generation of entangled states in parametric amplifiers and highly efficient homodyne detection. In this presentation, we propose new protocols for manipulation of entanglement of Gaussian states.
Firstly, we study entanglement concentration of split singlemode squeezed vacuum states by photon subtraction enhanced by local coherent displacements. These states can be obtained by mixing a singlemode squeezed vacuum state with vacuum on a beam splitter and are, therefore, generated more easily than twomode squeezed vacuum states. We show that performing local coherent displacements prior to photon subtraction can lead to an enhancement of the output entanglement. This is seen in weaksqueezing approximation where destructive quantum interference of dominant Fock states occurs, while for arbitrarily squeezed input states, we analyze a realistic scenario, including limited transmittance of tapoff beam splitters and limited efficiency of heralding detectors.
Next, motivated by results obtained for bipartite Gaussian states, we study symmetrization of multipartite Gaussian states by local Gaussian operations. Namely, we analyze strategies based on addition of correlated noise and on quantum nondemolition interaction. We use fidelity of assisted quantum teleportation as a figure of merit to characterize entanglement of the state before and after the symmetrization procedure. Analyzing the teleportation protocol and considering more general transformations of multipartite Gaussian states, we show that the fidelity can be improved significantly.
Be the first to like this
Be the first to comment