Optically levitated nanoparticles present an attractive optomechanical platform owing to their lack of clamping losses. The most promising approach to control the state of nanoparticle motion is coherent scattering of tweezer photons into a cavity mode. Originally proposed as a technique for cooling the motion of atoms and ions, this mechanism has recently been used to cool the motion of a nanoparticle to its quantum ground state for the first time. In my presentation, I will discuss how coherent scattering can be used to create and measure complex motional states of levitated nanoparticles. Coherent scattering gives us access to the same basic types of interaction as the more usual radiation-pressure interaction (of the beam-splitter and two-mode-squeezing type) allowing the same protocols to be realized. An important distinction—relevant particularly for quantum nondemolition readout of nanoparticle motion—is that coherent scattering can be accompanied by additional effects modifying the free nanoparticle evolution. I will discuss these differences and address the consequences they have for controlling and measuring nanoparticle motion in the quantum regime.