Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Controlling the motion of levitated particles by coherent scattering

172 views

Published on

Slides for the talk I was to give at the APS March Meeting in Denver on March 3, 2020.

Published in: Science
  • Be the first to comment

  • Be the first to like this

Controlling the motion of levitated particles by coherent scattering

  1. 1. Controlling the motion of levitated particles by coherent scattering Ondřej Černotík, Iivari Pietikäinen, Anil Kumar, and Radim Filip Department of Optics, Palacký University Olomouc, Czechia APS March Meeting, March 3, 2020 @cernotik
  2. 2. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Optical levitation allows for high-quality mechanical motion without damping. 2 Nonspherical particles S. Kuhn et al., Optica 4, 356 (2017) Hybrid systems L.P. Neukirch et al., Nat. Photon. 9, 653 (2015) Cavity optomechanics N. Kiesel, PNAS 110, 14180 (2013) Thermodynamics I.A. Martinez et al., Nat. Phys. 12, 67 (2016)
  3. 3. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Coherent scattering is a new, powerful tool for optomechanical interactions. 3 U. Delic et al., PRL 122, 123602 (2019) D. Windey et al., PRL 122, 123601 (2019) U. Delic et al., Science 367, 892 (2020)
  4. 4. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik The system is versatile, allowing one-, two-, and three- dimensional coupling. 4 C. Gonzalez-Ballestero et al., PRA 100, 013805 (2019) Intracavity intensity Radial coupling Axial coupling Polarization Etw<latexit sha1_base64="bRQQNOEkJg9znsC3zqgs56MYHpg=">AAACH3icbVDLSsNAFJ3UV42vqks3wSK4kJLEoi5LRXRZxT6gDWUynbRDJw9mbtQS8idu/BU3LhQRd/0bp2kX2nrgwuHcx5w5bsSZBNMca7ml5ZXVtfy6vrG5tb1T2N1ryDAWhNZJyEPRcrGknAW0Dgw4bUWCYt/ltOkOLyf95gMVkoXBPYwi6vi4HzCPEQxK6hbOOkCfILvTvruuOoltmye2basqp4ne8TEMXC+5SrsZFX4Cj6medgtFs2RmMBaJNSNFNEOtW/ju9EIS+zQAwrGUbcuMwEmwAEY4TfVOLGmEyRD3aVvRAPtUOknmKzWOlNIzvFCoCsDI1N8bCfalHPmumpyYlPO9ifhfrx2Dd+EkLIhioAGZPuTF3IDQmIRl9JigBPhIEUwEU14NMsACE1CR6ioEa/7Li6Rhl6zTkn1bLlaqszjy6AAdomNkoXNUQTeohuqIoGf0it7Rh/aivWmf2td0NKfNdvbRH2jjH0y5oe4=</latexit> Ecav<latexit sha1_base64="nvRiBR5yCYIOD0X3nzXvyGTc6/c=">AAACIHicbVDLSsNAFJ3UV42vqks3wSK4kJLEQl2Wiuiyin1AG8pkOmmHTh7M3BRLyKe48VfcuFBEd/o1TtMutPXAhcO5jzlz3IgzCab5peVWVtfWN/Kb+tb2zu5eYf+gKcNYENogIQ9F28WSchbQBjDgtB0Jin2X05Y7upz2W2MqJAuDe5hE1PHxIGAeIxiU1CtUukAfILvTubuuOYltm2e2basqp4ne9TEMXS+5SnsZFX5C8DjV016haJbMDMYyseakiOao9wqf3X5IYp8GQDiWsmOZETgJFsAIp6nejSWNMBnhAe0oGmCfSifJjKXGiVL6hhcKVQEYmfp7I8G+lBPfVZNTl3KxNxX/63Vi8C6chAVRDDQgs4e8mBsQGtO0jD4TlACfKIKJYMqrQYZYYAIqU12FYC1+eZk07ZJ1XrJvy8VqbR5HHh2hY3SKLFRBVXSD6qiBCHpEz+gVvWlP2ov2rn3MRnPafOcQ/YH2/QP8tqJH</latexit> Hint ∝ Ecav(r) ⋅ Etw(r) ≃ − (λxx + λyy)(c + c† ) − iλzz(c − c† )
  5. 5. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik We are interested in generating one-mode mechanical squeezing. 5 ·c = − (κ + iΔ)c + iλx + 2κcin ·x = ωmp ·p = − ωmx − γp + λ(c + c† ) + ξ H = ωm 2 (x2 + p2 ) + Δc† c − λ(c + c† )x
  6. 6. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Strong squeezing can be generated with a modulated trapping beam. 6 OC, R. Filip, PRResearch 2, 013052 (2020)ˇ tweezer amplitudeEtw(t) = E0[1 + α cos(2ωmt + ϕ)] H = Δc† c + ωm 2 p2 + ωm 2 [1 + α cos(2ωmt + ϕ)]2 x2 −λ[1 + α cos(2ωmt + ϕ)](c + c† )x
  7. 7. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Strong squeezing can be generated with a modulated trapping beam. 7 OC, R. Filip, PRResearch 2, 013052 (2020)ˇ transient regime, Δ ≫ λ, κ, ωm parametric squeezing steady state, Δ = ωm dissipative and parametric squeezing
  8. 8. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Extensions and applications of this scheme are possible. 8 • Towards full control of motion of a levitated particle • Mechanical squeezing for force sensing J. Gieseler et al., Nat. Phys. 9, 806 (2013) • Parametric and dissipative two-mode squeezing A. Pontin et al., PRL 116, 103601 (2016) C.F. Ockeloen-Korppi et al., Nature 556, 478 (2018) • Analysis beyond RWA I. Pietikäinen, OC, R. Filip, arXiv:2002.xxxxx Talk by Iivari: M02.00008, Wednesday, 12:39 PM, room 105
  9. 9. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Coherent scattering allows versatile interactions with multiple particles. 9 H = − (λ1b1 + λ2b† 2 )c† − (λ1b† 1 + λ2b2)c
  10. 10. Ondrej Cernotík: Controlling the motion of levitated particles by coherent scatteringˇˇ @cernotik Coherent scattering is a powerful tool for levitated optomechanics. 10 • Multiparticle dynamics via coherent scattering A. Kumar, OC, R. Filip, in preparationˇ • Mechanical squeezing for force sensing • Towards full control of motion of a levitated particle OC, R. Filip, PRResearch 2, 013052 (2020)ˇ • Mechanical squeezing for force sensing • Analysis beyond RWA I. Pietikäinen, OC, R. Filip, arXiv:2002.xxxxx Talk by Iivari: M02.00008, Wednesday, 12:39 PM, room 105 ˇ

×