Investigation project

302 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
302
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Investigation project

  1. 1. Microscopy Imaging of nano-fibersDr. Otaño<br />Elias Pabon<br />Omar Padilla<br />RISE Program 2010-11<br />
  2. 2. Microscopy Imaging of nano-fibers<br />Electrospinning technique used to produce nano-fibers.<br />The electrospinning is a process where you draw o put fibers of an element using an electrical charge. The electrical charge process occurred by a high voltage application.<br />High voltage to produce the charge<br />
  3. 3. Microscopy Imaging of nano-fibers<br />Nano-fibers covered with tin (Sn).<br />Tin oxide (SnO4) works as a hydrogen sensor. <br />Oxidize tin by applying heat (400°C) for 1 hour.<br />Scanning Electron Microscope<br /><ul><li>Voltage: 10kV
  4. 4. Current: 40
  5. 5. Distance: 8mm</li></ul>Edax Genesis Software to identify components of sample. <br />
  6. 6. Hypothesis<br />With the use of electrospining we will create tin (Sn) nano-wires that when heated will oxidize havig a higher percentage of oxygen.<br />
  7. 7. Methodology<br />Have a prepared sample of nano-wires covered with tin (Sn)<br /><ul><li> Using an electron microscope verify the formation on nano-wires and take pictures.
  8. 8. Use Edax Genesis software to analyze components of sample.</li></li></ul><li>Methodology<br /><ul><li>Heat the samples at 400°C for 1 hour.</li></ul>Observe sample under the eletron microscope and take pictures<br /><ul><li> Use Edax Genesis software to analyze components of sample.</li></li></ul><li>Sample: SnSp #5 10mT 100s<br />1,000X<br />
  9. 9. Sample: SnSp #5 10mT 100s<br />5,000X<br /><ul><li>5,000X
  10. 10. heated</li></li></ul><li>Sample: SnSp #5 10mT 100s<br />15,000X<br />15,000X<br />heated<br />
  11. 11. Sample: SnSp #5 10mT 100s<br />10,000X<br /><ul><li>10,000X
  12. 12. heated</li></li></ul><li><ul><li>carbon tape</li></li></ul><li>Components of Samples<br />SnSP #5 10mT 100s<br /><ul><li>Carbon (C)  9.44%
  13. 13. Oxygen (O)  16.79%
  14. 14. Tin (Sn)  33.61%
  15. 15. Silicon (Si)  40.15%</li></li></ul><li>Components of Samples<br />SnSP #5 10mT 100s <br />400ºC 1hr<br /><ul><li>Carbon (C)  11.61%
  16. 16. Oxygen (O)  32.81%
  17. 17. Tin (Sn)  31.96%
  18. 18. Silicon (Si)  21.35%</li></li></ul><li>Conclusion<br />Finally, the electrospinning process is producing important results for research:<br />Better Hydrogen sensors<br />New model for the Hydroxiapatyte production <br />Best reactivity for the sensors applications<br />
  19. 19. References<br />Silbereberg, Chemistry: The Molecular Nature of Matter and Change 5 Ed., McGraw Hill, New York, 2009.<br />http://en.wikipedia.org/wiki/Electrospinning<br />http://www.anl.gov/Media_Center/News/2005/news050525.html<br />

×