Preparation material clue expert workshop

468 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
468
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Preparation material clue expert workshop

  1. 1. Climate Neutrality for Urban Districts in Europe Edinburgh Expert Workshop 14th-15th March 2013 Expert WorkshopPreparation MaterialThis project is funded by the European Regional Development Fund through the INTERREG IVC
  2. 2. WELCOME TO THE EXPERT WORKSHOP INEDINBURGHWe are happy to welcome you to the Expert Workshop in Edinburgh. This event ispart of the INTERREG IVC project CLUE (Climate Neutral Urban Districts inEurope); a project where regions, cities and universities across Europe exchangeexperiences and develop methods concerning policymaking. This workshopfocuses on methods and tools for indicators, benchmarking and scenario regardingclimate neutrality for urban districts.This material hopes to aid you in your preparations before the workshop as well asbe a guiding document during the event. Included is related background readingfor each of the three sessions that the workshop will consist of but also practicalinformation as venue and transportation information and the latest agenda. Wehope that this document will provide all the information needed.Session 2 of this event will consist of three thematic workshops (breakoutsessions) running in parallel. This means that the workshop participants will bedivided into three groups. For this to run as smoothly as possible we ask you tochoose which one of the groups you would like to join. The three themes are;  Indicators for following up and evaluate climate neutrality actions  Benchmarking; accounting procedures, audit tools for calculations of carbon footprints.  Scenario methods for planning and development of climate neutralityPlease announce which group you would like to join to Louise Årman atlarman@kth.se. We would be grateful if you could give us this indication at thelatest on Friday March 8th. We will do our best to meet all of your requestsconcerning choice of group but we cannot guarantee that we can meet you firstchoice due to restricted number of places in each group.We also hope that you as a participating expert will contribute with 5-10 minutespresentation of experiences within you groups theme. You can use power-point, but itis not necessary, it is more important that you could present you or your city´sexperiences of work. Included in the material for session 2 you can find guidingquestions that we hope can facilitate and be an inspiration in the preparation of apresentation.Looking forward to meet all of you in Edinburgh for an exciting event and warmlywelcome to the Expert Workshop!On behalf of the university group in the CLUE projectFEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET. This project is funded by the European Regional Development Fund through the INTERREG IVC programme
  3. 3. VENUE AND TRANSPORT INFORMATIONThe Edinburgh Workshop will be held in The Edinburgh Suite in New Craig, themain building on Edinburgh Napier University’s Craighouse Campus, CraighouseRoad, Edinburgh EH10 5LG.Craighouse is located in the south west of the city. It is served by two buses: thenumber 23 which runs every 10 minutes; and the number 41 which runs every 30minutes. Both buses drive up into the campus itself.Taxis are the easiest option and can be either booked in advance or hailed on thestreet. The two largest firms are Central (0131 2292468) and City Cabs (0131 2281211). If you have any questions or need assistance with travel arrangements inEdinburgh please contact Fiona Campbell at fh.campbell@napier.ac.uk.AGENDADAY 1, MARCH 14TH, 08.30-17.0008.30-09.00: Coffee09.00-09.30: Welcome to the Expert WorkshopPresentation of general outline and practical information09.30-11.00: Session 1: What do we mean with Climate Neutrality onan Urban District Level?  Definitions, science, technology, models and tools for policy making, with references e.g. to Clinton Climate Initiative and Stockholm Royal Seaport (Industrial Ecology, KTH)  Q&A11.00-11.45: Session 2: Introduction to the Thematic WorkshopsIntroduction to the thematic workshops, aims, outline and preface to each theme.12.00-13.00: Lunch13.00-15.00 Parallel Thematic WorkshopsDuring the afternoon of the first day three parallel thematic workshops will beheld on experiences and methods:  Indicators for following up and evaluate climate neutrality actions  Benchmarking; accounting procedures, audit tools for calculations of carbon footprints.  Scenario methods for planning and development of climate neutrality actions.FEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET. This project is funded by the European Regional Development Fund through the INTERREG IVC programme
  4. 4. 15.00-15.30 Coffee15.30-16.30: Summery of the Day  Summary of the parallel workgroups presented by the moderator of each group  Common discussion and Q&A16.30-17.30: Session 3: Introduction to the Scenario Wor kshop NextDay20.00- Conference DinnerDAY 2, MARCH 15TH, 08.30-14.0008.30-09.00: Coffee09.00-12.00: Simulated Scenario WorkshopThis last part of the workshop will demonstrate how scenario methods might beused in city planning and stakeholder participation. This will be a simulatedstakeholder scenario workshop. Participants will get instructions before and somemight be invited to present scenarios regarding an imaginary European city.The workshop will consider future energy consumption scenarios and focus ondilemmas regarding climate neutral urban areas. Important dilemmas are forexample:  Focus on reduced energy consumption or on supplying renewable energy  Focus on more population density to prevent urban sprawl and increase infrastructure efficiency, or more green areas and urban gardens?After this simulated workshop, it will be discussed to what degree this approachmeets requirements of various participants.The University of Delft is responsible for this workshop and backgrounddocuments.12.00-13.00: Ending Plenary Session  Feedback of scenario building exercises  Next steps and creation of a carbon neutrality network  Summary of the workshop13.00-14.00: LunchFEL! INGEN TEXT MED ANGIVET FORMAT I DOKUMENTET. This project is funded by the European Regional Development Fund through the INTERREG IVC programme
  5. 5. Session 1 - Climate Urban Neutrality ContentJohansson et. al. (submitted). Creating a Climate Positive Urban District – ACase Study of Stockholm Royal Seaport. Submitted to Journal of Energy PolicyJohansson et. al. (submitted). Climate Positive Urban Districts – MethodologicalConsiderations. Using Findings Based on the Case of Stockholm Royal Seaport. Submitted to Journal of Energy Policy
  6. 6. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!    Creating  a  Climate  Positive  Urban  District    –  A  Case  Study  of  Stockholm  Royal  Seaport      Stefan  Johansson*,  PhD  Candidate,  sjindeco@kth.se    Tel:  +46  8  790  87  61  Hossein  Shahrokni,  PhD  Candidate,  hosseins@kth.se  Tel:  +46  8  790  87  05  Anna  Rúna  Kristinsdóttir,  Research  Engineer,  arkr@kth.se  Tel:  +46  8  790  87  05  Nils  Brandt,  Associate  Professor,  nilsb@kth.se  Tel:  +46  8  790  87  59    *Corresponding  author    KTH,  Royal  Institute  of  Technology  School  of  Industrial  Engineering  and  Management  Division  of  Industrial  Ecology    Teknikringen  34  SE-­‐100  44  Stockholm,  Sweden      Abstract:  This  paper  describes  the  findings  of  a  case  study  on  the  possibility  to  create   a   climate   positive   urban   district,   the   Stockholm   Royal   Seaport   (SRS).   SRS  is  being  developed  with  the  explicit  goal  of  becoming  climate  positive  and  in  the  paper   we   study   SRS’s   emissions   of   greenhouse   gases   (GHG)   and   tries   to  determine   this   possibility.   To   support   our   findings   we   define   the   concept   of   a  climate  positive  urban  district,  SRS’s  scope  of  emissions  and  system  boundaries,  in   order   to   create   a   baseline   of   the   urban   district’s   GHG   emissions.   Finally   we  discuss   SRS’s   process   of   trying   to   become   a   climate   positive   urban   district,   both  in   terms   of   considerations   that   have   been   made   regarding   scopes,   boundaries  and  data  as  well  as  SRS’s  relation  to  the  City  of  Stockholm.        Key  words:    Climate  positive  urban  districts  Stockholm  Royal  Seaport    Case  study                 1. Introduction  By   2007,   more   than   half   the   world’s   population   was   living   in   urban   areas  (United   Nations,   2007).   Cities   are   becoming   one   of   the   key   leverage   points   for  climate  change,  since  they  are  recognised  as  being  one  of  the  major  emitters  of  greenhouse   gases   (GHG),   while   also   being   the   ideal   platform   to   cut   emissions  (Grimm  et  al.,  2008;  International  Energy  Agency,  2008).  In  Stockholm,  Sweden,  a  new  urban  district  called  Stockholm  Royal  Seaport  (SRS)  is  being  developed,  with   the   explicit   goal   of   achieving   climate   positive   status.   The   Clinton     1  
  7. 7. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  Foundation’s   Clinton   Climate   Initiative   (CCI)   developed   the   conceptual  framework   for   climate   positive   urban   districts,   the   Climate   Positive   Program,  and   SRS   is   one   of   16   participating   projects   in   different   regions   around   the  world.  The  framework  focuses  on  low  energy  use,  a  high  degree  of  renewables,  local   on-­‐site   energy   production   and   influencing   nearby   districts/communities  towards  low  carbon  emissions  (CCI,  2011).  This  paper  examines  the  concept  of  a   climate   positive   urban   district   by   applying   the   CCI   framework   to   SRS,   while  still   maintaining   the   possibility   to   compare   SRS   to   the   City   of   Stockholm   by  using   the   same   methodology   concerning   local   data   and   system   boundaries   as  the  City.    It  also  compares  the  urban  district  in  general  and  its  GHG  emissions  to  the  rest  of  the  city  and  tries  to  draw  conclusions  from  the  findings.      The  paper  begins  by  describing  the  SRS  urban  district,  its  characteristics  and  its  relation  to  the  City  of  Stockholm  in  terms  of  climate-­‐related  goals  and  then  goes  on   to   describe   SRS’s   process   to   become   a   climate   positive   urban   district.   The  aims   and   objectives   of   the   case   study   are   then   presented,   beginning   with   an  examination   of   the   definition   of   a   climate   positive   urban   district,   scopes   of  emissions   and   system   boundaries   and   then   describing   the   calculated   GHG  emissions   of   the   urban   district.   Next,   the   baseline   emissions   are   compared  against  the  magnitudes  of  a  few  possible  actions  to  reduce  the  urban  district’s  GHG   emissions.   Finally,   there   is   a   concluding   discussion   on   the   concept   of   a  climate   positive   urban   district,   its   GHG   emissions   and   the   generality   of   the  results.   2. Background      Characteristics  of  the  SRS  area  –  Present  and  Future  Infrastructure  The  area  where  SRS  is  being  built  is  a  brownfield  site  currently  being  used  for  housing,   gas   utilities,   a   combined   heat   and   power   plant   and   a   harbour.   It   serves  as   a   thoroughfare   for   traffic   to   the   harbour   and   to   the   island   of   Lidingö  (population  42  000  in  2009;  Lidingö  stad,  2011).  SRS  also  occupies  a  wedge  of  the   National   City   Park   in   central   Stockholm   (City   of   Stockholm,   2011).   The  current   thoroughfare   will   be   expanded   in   an   effort   to   build   a   partial   beltway  around  Stockholm.  By  the  time  the  development  is  completed,  a  total  of  10,000  apartments   housing   19   000   residents   will   have   been   built,   along   with   a   large  non-­‐residential   area   containing   workspaces   for   30   000   workers,   commercial  spaces  and  a  shopping  mall.  The  SRS  project  is  expected  to  achieve  full  build-­‐out  in   2030,   but   the   first   residents   will   be   moving   in   later   this   year.   The   planned  land  uses  are  summarised  by  area  in  Table  1.      Table  1.  Built  areas  of  Stockholm  Royal  Seaport  by  type  at  full  build-­‐out   Planned  area  [m2]  at  full  build-­‐out  Land  use  by  type  Multifamily  housing   1,143,400  Office  space   712,330  Commercial  space   84,015  Schools   9,500     2  
  8. 8. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  Source:  Johansson  et  al.  (2012b).  SRS  in  Relation  to  the  City  of  Stockholm  and  its  Climate  Goals  SRS   is   located   near   central   Stockholm   (3   km   from   the   city   centre),   with   easy  access  to  public  transportation,  walking  and  cycle  trails.  The  area  is  to  become  Stockholm’s   second   so-­‐called   eco-­‐district,   with   a   strong   ‘green   profile’  formulated   in   a   environmental   programme   for   the   district   (City   of   Stockholm,  2012).  The  first  eco-­‐district,  Hammaby  Sjöstad  (Hammarby  Sea  City),  attempted  to   be   an   area   that   was   “twice   as   good”   from   an   environmental   perspective   as  other  areas  being  built  at  the  time  (mid-­‐1990s)  (Pandis  &  Brandt,  2009).      SRS  has  two  goals  with  regard  to  climate  change  and  GHG  emissions  by  the  time  build-­‐out   is   completed   in   2030,   namely   to   have   developed   a   climate   positive  urban   district   and   to   have   become   a   fossil-­‐fuel   free   urban   district   (City   of  Stockholm,  2010b).  As  a  comparison,  the  City  of  Stockholm’s  goals  are  to  limit  GHG  emissions  to  3.0  ton  carbon  dioxide  equivalents  (CO2e)  per  capita1  by  the  year  2015  and  to  become  a  fossil-­‐fuel  free  city  by  2050  (Stockholm,  2010a).      Since  SRS  is  part  of  the  City  of  Stockholm,  we  deemed  it  appropriate  to  base  our  study   on   earlier   experiences   from   the   City   and   to   use   the   same   system  boundaries   and   methods   for   quantifying   GHG   emissions   as   the   rest   of   the   City  whenever   possible.   This   approach   also   enabled   us   to   make   comparisons   and  benchmark   between   SRS   and   the   surrounding   City   of   Stockholm.   Like   many  cities   (Kramers   et   al.,   2012),   Stockholm   has   traditionally   focused   on   direct  emissions   within   its   geographical   boundary   while   excluding   emissions   from  sources   such   as   long   distance   travel,   construction   and   consumption.   A  noteworthy   feature   of   the   City   of   Stockholm   is   that   no   waste   treatment   takes  place  within  its  geographical  boundary  and  therefore  the  only  waste  emissions  included  are  those  from  collection,  transportation  and  incineration  of  waste  in  the  district-­‐heating  grid  (City  of  Stockholm,  2010a).     3. Aims  and  Objectives  The   main   aims   of   the   study   were   to   study   the   GHG   emissions   of   SRS   in   a  transparent  way  and  to  determine  its  possibilities  to  become  a  climate  positive  urban   district.   To   achieve   this   aim,   the   following   specific   objectives   were  formulated:     • Define  the  concept  of  a  climate  positive  urban  district     • Describe  SRS’s  scope  of  emissions,  system  boundaries  and  data     • Calculate  SRS’s  baseline  emissions   • Calculate   the   magnitudes   of   a   few   potential   actions   to   cut   SRS’s   GHG   emissions   • Discuss   the   results   obtained   in   terms   of   magnitude   of   GHG   emissions,   SRS’s   possibility   to   become   climate   positive   and   the   relationship                                                                                                                  1  By  capita,  the  city  and  we  use  the  number  of  residents  living  in  an  enclosed  area,  either  the  City  of  Stockholm  or  the  SRS  urban  district.       3  
  9. 9. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!   between  GHG  emissions  from  SRS  compared  with  those  from  the  rest  of   the  City  of  Stockholm.    This  paper  describes  the  findings  of  our  case  study  on  SRS’s  progress  towards  becoming  a  climate  positive  urban  district.     4. The  Concept  of  a  Climate  Positive  Urban  District    A  number  of  different  terminologies  and/or  concepts  are  used  when  discussing  GHG   emissions   in   urban   settings.   Most   are   intuitively   understandable   in   a  general   sense   (carbon-­‐neutral,   zero   carbon,   etc.)   but   when   examined   in   closer  detail   they   are   quite   diverse   and   formal   definitions   and   related   standards  currently   do   not   exist   (Murray   &   Dey,   2009)   or   are   vague,   creating   the  possibility   of   significant   confusion   and   uncertainty.   The   lack   of   standards   also  makes   comparison   and   benchmarking   between   cities/urban   districts   etc.  difficult  or  impossible.    The  Definition  of  a  Climate  Positive  Urban  District  Used  by  SRS  Kennedy   &   Sgouridis   (2011)   review   a   number   of   different   low   GHG   concepts.  According   to   their   definition,   a   carbon-­‐neutral   district   is   one   where   direct  emissions  (also  referred  to  as  scope  1)  and  important  indirect  emissions  (also  referred  to  as  scope  2  and  3)  are  in  balance/equal  to  reductions,  sequestrations,  sinks   and   offsets.   A   climate   positive   district   can   be   defined   as   one   where  emissions  are  less  than  the  sum  of  reductions,  sequestrations,  sinks  and  offsets,  or   where   reductions,   sequestrations,   sinks   and   offsets   outweigh   emissions.  However,  in  the  case  of  SRS,  we  were  unable  to  identify  any  significant  sinks  or  sequestrations.    SRS’s   Process   of   Becoming   a   Climate   Positive   Urban   District   According   to  CCI  There   are   two   main   phases   in   SRS’s   process   to   become   a   climate   positive   urban  district  based  on  the  methodology  supplied  by  CCI  (Figure  1)  (CCI,  2011).  The  first  step  of  the  process  is  to  create  a  GHG  emissions  baseline  for  the  SRS  area.  This   baseline   serves   as   the   basis   for   the   next   phase,   which   is   to   develop   a  roadmap   of   actions   that   will   lead   to   a   climate   positive   outcome.   The   roadmap  includes  actions  which  focus  on  energy  efficiency  measures,  fuel  switching  from  fossil   fuels   to   renewables   and   local   energy   generation.   The   roadmap   actions   are  constrained   to   those   directly   applied   within   SRS’s   geographical   boundary.  Figure  1  illustrates  the  process  being  used  by  SRS  to  become  climate  positive.       4  
  10. 10. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!        Figure  1.  Summary  of  the  process  by  which  Stockholm  Royal  Seaport  is  striving  to  become  a  climate  positive  urban  district.     5. The  GHG  Baseline  for  SRS  –  Scopes  and  Boundaries  In  the  GHG  baseline  for  SRS,  the  concept  we  used  for  setting  the  boundaries  was  that   initially   developed   for   the   GHG   Protocol   by   World   Resources   Institute  (WRI)   and   the   World   Business   Council   for   Sustainable   Development   (WBCSD)  (Rangathan  et  al.,  2004;  Kennedy  &  Sgouridis,  2011).  The  scopes  are  defined  as:    Scope  1  –  Includes  direct  emissions  such  as  emissions  from  heating,  cooling  and  transportation.  Scope   2   –   Core   external   emissions   such   as   waste   treatment   and   electricity  generation.  Scope   3   –   Non-­‐core   emissions   such   as   emissions   from   consumption   not  included  in  scope  1  or  2  and  other  emissions  not  connected  to  the  geographical  area  such  as  long  distance  travel.      When  defining  what  is  included  in  the  scopes,  the  district’s  system  boundaries  also  need to be defined.  There  are  four  system  boundaries  to  take  into  account,  geographical,     activity,   temporal   and   life   cycle   system   boundaries.   To   determine  the   emissions   included   within   the   boundaries,   SRS   focuses   on   emissions   related  to   activities   directly   related   to   the   geographical   area,   much   like   the   City   of  Stockholm   itself   does   when   calculating   emissions   for   the   entire   city   (City   of  Stockholm,  2010).    The  Geographical  Boundary  The   SRS’s   geographical   system   boundary   is   defined   as   the   perimeter   that  encloses  the  236  hectares  of  project  area  (City  of  Stockholm,  2012).  Emissions  associated   with   activities   related   to   the   district   and   emitted   inside   the     5  
  11. 11. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  geographical   boundary   are   accounted   for,   while   emissions   not   associated   with  the  district  are  excluded.  This  excludes,  among  other  activities,  emissions  from  the   combined   heat   and   power   plant   not   related   to   buildings   in   SRS,   since   it  supplies   a   far   greater   area   than   SRS   with   heating,   cooling   and   electricity.   If   a  strict  geographical  perspective  had  been  implemented,  all  of  the  emissions  from  the  power  plant  would  have  been  included,  despite  the  fact  that  most  emissions  were  generated  by  energy  use  elsewhere.      The  Activity  Boundary  The   activity   boundary   determines   which   activities   are   included   and   excluded  from  the  baseline.  As  stated  previously,  we  deemed  it  appropriate  to  include  the  same   activities   as   the   City   of   Stockholm   does   when   calculating   its   GHG  emissions  (City  of  Stockholm,  2010a).  This  means  that  emissions  from  heating,  cooling,   electricity   and   transportation   are   included,   while   emissions   from   the  construction   of   infrastructure,   consumption   and   long   distance   travel   are  excluded.   A   main   difference   from   the   City   of   Stockholm’s   traditional   way   of  calculating  emissions  is  that  we  include  life  cycle  emissions  from  the  treatment  of  waste  in  the  baseline,  since  the  waste  is  generated  by  activities  taking  place  within   the   geographical   boundary   despite   treatment   taking   place   outside   it.  Traditionally,   the   City   of   Stockholm   has   only   included   waste   emissions  stemming  from  transportation  and  waste  incineration.  The  rationale  behind  this  is  that  household  and  food  waste,  which  represents  the  majority  of  the  waste,  is  transported   for   incineration   in   the   local   district   heating   system,   whereas   the  treatment   plant   for   the   other   waste   is   located   outside   the   city   boundary.  However,  we  believed  that  its  emissions  should  be  included.    The  Temporal  Boundary    The   temporal   boundary   for   SRS   is   set   to   start   at   complete   build-­‐out   in   2030  (also   called   operational   emissions).   Therefore   emissions   from   building   and  infrastructure  construction  are  excluded.  The  emissions  are  measured  as  annual  emissions,   either   as   ton   CO2e   per   year   or   as   ton   CO2e/capita   and   year.   The  temporal  boundary  also  has  a  significant  effect  on  the  baseline.  Since  SRS  will  be  built   over   an   extended   period   of   time,   almost   20   years,   the   baseline   will   be   a  moving   target   as   the   technology   and   other   drivers   (for   instance   travel  behaviour)   advance   throughout   the   development   process.   Current   trends   with  more   energy-­‐efficient   buildings   and   vehicles   and   a   shift   to   more   vehicles  running  on  renewable  fuels  are  likely  to  continue  (Trafikverket,  2011),  but  can  be  (partially)  offset  by  increased  use.  To  counter  this  potential  uncertainty,  we  decided  to  use  2010  as  a  base  year  of  reference  in  the  baseline.  The  base  year  is  used   to   set   the   composition   of   energy   sources,   vehicle   fleet,   waste   generation,  emission  factors  of  district  heating  and  electricity  and  so  forth.  No  changes  over  time   are   taken   into   account   for   the   baseline,   which   has   been   found   to   be   the  most  conservative  approach.  The  Life  Cycle  Boundary  The   City   of   Stockholm   uses   life   cycle-­‐based   emission   factors   for   all   fuels   and  energy   carriers   used   in   mobile   and   stationary   combustion,   using   the   best  available  data  for  each  energy  source  and  presenting  all  data  used,  calculations  and  assumptions  in  a  transparent  way  (Johansson  et  al.,  2012b).  The  life  cycle     6  
  12. 12. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  data  include  emissions  of  carbon  dioxide,  methane  and  nitrous  oxide,  accounted  as  CO2e.      Summary  of  SRS’s  Scopes  and  Boundaries    Using   the   scopes   of   emissions   together   with   the   system   boundaries   we   were  able   to   decide   which   emissions   are   included   in   the   baseline   and   which   are  excluded.  For  each  emission  category,  the  principle  of  activities  directly  related  to   the   geographical   area   is   used.   However,   within   each   emissions   category  important  choices  had  to  been  made,  as  described  below.    Energy  The   emissions   from   energy   include   emissions   from   energy   use   in   the   area  (buildings,   infrastructure)   and   emission   reductions   from   local   energy  generation  (more  about  this  in  the  results  of  the  SRS  baseline).  The  principle  of  only   including   activities   directly   related   to   the   SRS   district   were   used   to   limit  the   emissions   from   the   combined   heat   and   power   plant   located   in   the   area   to  emissions   from   building   energy   use   (heating,   cooling,   electricity)   in   the   area,  instead   of   accounting   for   all   of   the   emissions,   since   the   majority   of   these   stem  from  energy  use  in  the  City  of  Stockholm.    Transportation  The   transportation   emissions   include   emissions   from   people   and   activities  directly   connected   with   the   urban   district.   This   means   that   transportation  emissions  from  residents’  private  and  commuting  trips  are  included,  while  their  business  trips  are  excluded  since  it  was  assumed  that  they  do  not  work  locally.  For   workers,   the   emissions   from   personal   trips   and   commuting   are   excluded,  since   they   were   assumed   not   to   live   in   SRS,   while   emissions   from   business   trips  are  included,  since  the  companies  are  located  within  SRS.    Waste  The  emissions  from  waste  include  emissions  from  the  waste  collection  process,  transportation  and  the  treatment  of  waste.    Excluded  emissions  The   emissions   from   consumption   are   excluded,   since   almost   none   of   the   GHG  emissions   from   the   production   of   the   goods   consumed   take   place   inside   SRS,  with  the  exception  of  energy  use  and  emissions  from  waste.    Long   distance   travel   by   modes   such   as   air,   bus,   ferry   and   train   are   excluded,  since  they  do  not  take  place  within  the  geographical  area.    Emissions   from   societal   functions   that   a   person   living   in   SRS   (might)   need,   such  as  hospitals,  sport  centres,  public  administration,  etc.  are  excluded,  since  these  activities  do  not  take  place  within  SRS.      The   included   and   excluded   emissions   in   the   GHG   emissions   baseline   for   SRS   are  summarised  in  Table  2.      Table  2.  Summary  of  included  and  excluded  GHG  emissions  in  the  Stockholm  Royal  Seaport  baseline  Included  emissions   Comments  Energy   -­‐Emissions   related   to   heating,   cooling   and   electricity  directly  linked  to  activities  within  the   geographical  boundary  of  SRS.       7  
  13. 13. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!   -­‐Emission   reductions   from   local   energy   production   directly   related   to   the   geographical   boundary  of  SRS.   -­‐Energy   used   in   infrastructure   such   as   road   maintenance,  traffic  lights,  etc.    Transportation   Emissions   related   to   transportation   stemming   from   activities   directly   related   to   the   geographical  area  of  SRS:     - Private  trips  (residents)   - Commuting  trips  (residents)   - Business  trips  (workers)   - Goods  and  services  Waste   Emissions   and   emissions   reductions   from   the   collection,  transport  and  treatment  of  waste.    Excluded  emissions   Comments  Consumption   The   only   emissions   from   consumption   included   are   direct   energy   use   and/or   emissions   from   waste.    Long  distance  travel   Air  travel,  long  distance  bus,  ferry,  train  Emissions   from   societal   - Hospitals  functions   not   located   within   - Sport  centres  SRS   - Public  administration     …  Construction       6. Results:  The  GHG  baseline  of  SRS  –  Emissions  and   Calculations  Calculations  of  the  yearly  GHG  emissions  in  the  baseline  were  divided  into  three  main  emissions  categories:  energy,  transportation  and  waste.  For  instance,  the  energy   emissions   category   includes   energy   in   buildings,   infrastructure,   water  and   locally   generated   energy.   For   each   emissions   category,   the   data   used   are  described  below  together  with  any  assumptions  made.  To  determine  what  data  to  use  in  the  baseline,  we  adopted  the  following  data  hierarchy:       1. Where  local  SRS-­‐specific  data  are  available,  these  are  primarily  used.  For   instance   projected   heating   and   hot   water   demand   [kWh/m2   and   year]   for  buildings.     2. Where   SRS-­‐specific   data   are   unavailable,   data   for   the   City   of   Stockholm   or   greater   Stockholm   are   used,   for   instance   composition   of   the   vehicle   fleet   [%   gasoline   cars,   %   biogas   cars,   etc.],   and   emissions   from   the   Stockholm  district  heating  mix  [g  CO2e/kWh].   3. Where   data   specific   for   Stockholm   are   unavailable,   data   for   Sweden   or   the   Nordic   countries   are   used,   for   instance   GHG   emissions   from   waste   management  by  fractions  of  waste  in  Sweden  [g  CO2e/ton  waste].     8  
  14. 14. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!    All  calculations  made  are  using  the  same  basic  formula:     Activity  *  Emission  Factor  =  Emissions    Examples   of   activities   are   annual   energy   use   [kWh   of   a   fuel   or   energy  carrier/year],   annual   person   kilometres   (PKM)   travelled   [PKM   of   a   mode   of  transportation/year]   and   annual   waste   generated   [ton   per   waste   fraction   and  year].   The   emission   factors   are   coupled   with   the   respective   activities.   In   the  example   above,   emissions   from   energy   use   are   expressed   as   [g   CO2e/kWh   of  fuel  or  energy  carrier],  those  from  transportation  as  [g  CO2e/PKM  of  the  mode  of  transportation  used]  and  those  from  waste  as  [g  CO2e/ton  of  waste  fraction  and  treatment  method].    Energy  The   emissions   related   to   energy   in   the   baseline   include   emissions   from   heating,  cooling   and   electricity   used   in   buildings,   emissions   from   energy   used   in   the  infrastructure  (street  lights,  traffic  lights,  road  maintenance,  snow  clearing,  etc.)  and   emissions   from   supplying   the   district   with   water.   Also   included   in   the  energy   part   of   the   baseline   are   emissions   reductions   from   locally   generated  energy,  such  as  biogas  from  wastewater  sludge.    Buildings  The   buildings   in   the   SRS   are   divided   into   four   categories,   multifamily   housing,  offices,   commercial   space   and   schools.   The   emissions   included   come   from  heating,   cooling   and   electricity,   with   electricity   end-­‐uses   tracked   separately  (elevators,  pumps,  ventilation,  etc.).    Data  used  and  calculations:    The   data   used   in   the   baseline   are   based   on   the   assumption   that   the   projected  (simulated)  energy  use  for  the  buildings  in  the  first  construction  phase  (2012-­‐2014)  will  be  representative  for  the  entire  district.  The  emissions  factors  used  are   three-­‐year   mean   values   for   the   Stockholm   district   heating   mix   and   the  Nordic   electricity   system   (Johansson   et   al.,   2012b).   The   reason   for   using   the  three-­‐year   mean   instead   of   only   using   the   base   year   (2010)   emissions   was   to  eliminate   the   seasonal   variations   of   hot   and   cold   years,   which   affect   the  emissions  factors.      For   each   type   of   building,   the   projected   energy   used   is   calculated.   In   the   first  build   phase   strict   energy   requirements   on   energy   use   in   buildings   had   yet   to   be  implemented  but  simulations  have  demonstrated  that  the  projected  energy  use  is   roughly   25%   lower   than   specified   in   the   current   Swedish   building   codes  (Boverket,   2011).   Total   energy   use   and   emissions   are   therefore   calculated  according  to  Table  3.    Table  3.  Projected  energy  use  and  emissions  from  different  types  of  buildings  in  the  baseline  Energy  by  type/Buildings  by  type   Residential   Offices   Commercial   Schools  Heating  and  cooling          Heating  [kWh/m2,  year]   42.5   35   25   55  Hot  water  [kWh/m2,  year]   25   2   2   10     9  
  15. 15. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  Cooling  [kWh/m2,  year]   0   20   35   0  Surface  area  [m2]   1,143,400   712,330   84,015   9,500  Total  energy  use  [GWh/year]   77.2   40.6   5.2   0.6  Emissions  factor  [g  CO2e/kWh]   98.45  Total  emissions  [ton  CO2e/year]   7  598.3   3  997.4   512.8   60.8            Electricity          Building  electricity  [kWh/m2,  year]   15   25   20   15  Residential/commercial   electricity   30   50   80   35  [kWh/m2,  year]  Surface  area  [m2]   1,143,400   712,330   84,015   9,500  Total  energy  use  [GWh/year]   51.5   53.4   8.4   0.48  Emission  factor  [g  CO2e/kWh]   69.73  Total  emissions  [ton  CO2e/year]   3,587.8   3,725.3   585.8   33.1            Total   emissions   (heating,   cooling   &   11,186.1   7,722.7   1,098.6   93.9  electricity)   by   building   type    [ton  CO2e/year]  Total  building  emissions  [ton  CO2e/year]   20,301.3  Source:  Johansson  et  al.  (2012b).  Infrastructure,  Water  and  Locally  Generated  Energy  The   emissions   from   infrastructure   in   SRS   include   emissions   from   electricity  used   in   streetlights,   traffic   lights,   non-­‐building   related   electricity   (pumps,  fountains,   etc.)   as   well   as   mainly   diesel   fuel   used   in   the   operation   of   road  infrastructure   (road   maintenance,   snow   cleaning,   gritting,   etc.)   (Table   4).   The  emissions   from   water   include   emissions   from   the   electricity   used   to   collect,  treat  and  distribute  water  to  and  from  SRS.    In   the   baseline   there   is   not   much   local   energy   production,   but   wastewater  sludge   from   the   urban   development   is   collected   and   used   to   generate   biogas.   In  the  baseline  scenario  the  biogas  is  then  upgraded  and  used  to  replace  gasoline  in  cars,  thus  reducing  baseline  emissions  (Johansson  et  al.,  2012b).    Data  used  and  calculations:    The   data   regarding   electricity   use   in   infrastructure   were   developed   using   the  master  plans  for  SRS.  The  data  for  road  maintenance  are  based  on  figures  from  the  City  of  Stockholm  (Fahlberg  et  al.,  2007),  assuming  that  SRS  infrastructure  will  require  the  same  amount  of  maintenance  as  the  rest  of  the  City.    Water  use  is  based  on  technology  currently  in  use  in  Hammarby  Sjöstad  (Pandis  &  Brandt,  2009)  and  that  will  be  implemented  in  SRS,  while  the  energy  use  for  collection,   treatment   and   distribution   is   based   on   figures   for   the   City   of  Stockholm  (Stockholm  Vatten,  2010).    The   amount   of   biogas   generated   by   wastewater   sludge   was   estimated   and   the  full  amount  assumed  to  replace  gasoline  in  cars.      Table  4.  Projected  energy  use  and  emissions  from  infrastructure,  water  and  locally  generated  energy  in  Stockholm  Royal  Seaport  Activity   Annual   energy   Emissions   Emissions     use  [kWh/year]   factor     [ton  CO2e/year]     10  
  16. 16. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!   [g  CO2e/kWh]  Infrastructure        -­‐   Electricity   in   street   lights,   756,000   69.73   52.7  traffic  lights,  etc.  -­‐  Road  maintenance     7,670,300   279.31   2,142.4  Water          -­‐   Collection,   treatment,   1,862,595   69.73   129.9  distribution    Locally  generated  energy        -­‐   Generated   biogas   2,300,000   -­‐  586.6   -­‐  557.7  replacing  E5  Petrol  Total  emissions  [ton  CO2e/year]   1,767.3  Source:  Johansson  et  al.  (2012b).  Transportation  In   the   baseline,   transportation   emissions   are   divided   into   four   categories,  private   trips,   commuting   trips,   business   trips   and   the   transportation   of   goods  and  services  to  the  area.  The  transportation  emissions  highlight  the  problem  of  measuring   emissions   on   the   urban   district   level   in   comparison   with   the   city  level.  If  a  strict  geographical  perspective  is  employed  only  emissions  within  that  area  are  addressed.  This  might  lead  to  sub-­‐optimisation  by  clouding  significant  actions  that  could  improve  the  whole  transportation  system,  collaborating  with  the  right  stakeholders  (public  transportation  companies,  car  sharing  companies,  mobility   management,   etc.),   as   well   as   only   accounting   for   a   fraction   of   the  transportation   emissions   that   the   district   actually   generates.   For   instance,   the  new   thoroughfare   is   likely   to   include   significant   amounts   of   traffic   from   the  island   of   Lidingö,   combined   with   transportation   from   the   harbour,   both   of  which  are  mostly  unrelated  to  the  urban  district.  This  raises  the  question  of  who  should   be   responsible   for   them   and   where   the   reduction   strategies   should   be  implemented.   The   accounting   method   used   accounts   for   commuting   emissions  to  where  the  commuter  lives.  That  accounting  method  skews  planned  efforts  by  SRS   to   be   a   working   centre   with   more   than   twice   as   many   workspaces   as  residential   spaces.   Therefore   significant   emissions   from   worker   commutes   are  excluded,   despite   the   fact   that   that   most   “Smart   Growth”   transportation  measures   can   readily   be   undertaken   on   the   district   level   to   minimise   them.  These  include  mixed  use  planning,  increased  density,  increased  walkability  and  easy   cycling   access,   limited   parking   spaces   and   increased   parking   fees,   and   so  forth  (City  of  Stockholm,  2012).      Based   on   this,   the   baseline   transportation   emissions   include   emissions   from  residents’   private   and   commuting   trips,   workers’   business   trips   and   emissions  from  the  transportation  of  goods  and  services  delivered  to  and  from  the  urban  district  (Table  5).    Data  used  and  calculations:    All  activity  data  regarding  resident  and  worker  trips  were  developed  using  two  transportation   studies,   one   focusing   on   the   inner   City   of   Stockholm   (USK,   2006)  and   one   focusing   on   Stockholm   as   a   whole   (Rytterbro   et   al.,   2011).   The   total  projected  travel  demand  was  calculated.  Transportation  emissions  from  goods     11  
  17. 17. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  and   services   were   estimated   using   Stockholm-­‐specific   data   (Fahlberg   et   al.,  2007).    Table  5.  Projected  emissions  and  travel  behaviour  of  residents  and  workers  in  Stockholm  Royal  Seaport  2010  Mode   of   Residents     Workers   Emissions   Total   emissions  transportation   [PKM/year]   [PKM/year]   factor     [ton  CO2e/year]   [g  CO2e/PKM]  Car  -­‐  biogas   920,046   780,696   0.02   0.03  Car  –  E85   6,584,892   5,587,546   76.78   934.60  Car  –  Gasoline  E5   36,045,366   30,585,942   170.81   11,381.30  Car  –  Diesel  RME5   12,109,452   10,275,357   166.04   3,716.80  Car  –  Electric   2,418   2,052   11.56   0.05  Car  –  Hybrid   885,626   751,489   136.65   223.70  Local  bus   11,003,413   1,184,771   4.13   50.30  Local  train   27,907,469   1,777,157   0.05   1.50  Long  distance  bus   7,187,855   0,00   32.00   230.00  Long  distance  train   24,284,576   7,108,628   0.13   4.10  Physically  active   18,703,695   1,184,771   0.00   0  Total  residential  emissions   9,074.23  Total  worker  emissions     7,468.15  Goods  and  services   3,289.26  Transportation  totals   19,831.7  Source:  Johansson  et  al.  (2012b).  Waste  Each   waste   fraction   includes   emissions   from   collecting,   transporting   and  treating   each   fraction,   as   well   as   emissions   reductions   from   recycling   compared  with   using   virgin   materials   (Table   6).   The   waste   emissions   exclude   the  upstream   lifecycle   emissions   of   production   and   transporting   the   respective  goods   before   they   are   disposed   of   as   waste.   This   merits   a   discussion   about  consumption   that   is   outside   the   scope   of   this   paper,   but   it   should   at   least   be  noted   that   this   exclusion   leads   to   the   paradox   that   the   more   food   and   goods  consumed   within   SRS,   the   lower   their   emissions.   This   is   because   the   waste  generated   is   combusted   in   the   district   heating   system,   which   leads   to   lower  district   heating   emissions   compared   with   using   fossil   fuels.   Each   emissions  factor  is  based  on  waste  treatment  in  Sweden,  since  SRS-­‐specific  or  Stockholm-­‐specific  data  are  not  available  at  this  time.    Data  used  and  calculations:    The  waste  streams  in  the  urban  development  were  projected  using  data  for  the  City   of   Stockholm   combined   with   the   possibility   to   collect   household   waste,  combustibles,  newspapers  and  paper  beside  or  within  the  buildings  themselves.  Table  6.  Emissions  from  waste  in  the  baseline  for  Stockholm  Royal  Seaport    Waste  fraction   Ton   Emissions   factor     Annual   emissions   waste/year   [ton  CO2e/ton  waste  ]   [ton  CO2e/year]  Mixed   municipal   solid   7,574   All  municipal  solid  waste  is  used  in  the  City  of  waste   Stockholm’s  district  heating  network  and   emissions  are  therefore  attributed  there     12  
  18. 18. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  Gardening  waste   122   -­‐0.4   -­‐48.8  Bulk  waste   3,168   -­‐0.1   -­‐316.8  Sorted  waste        -­‐  Glass   718   -­‐0.04   -­‐28.7  -­‐  Paper   2,537   -­‐0.18   -­‐456.7  -­‐  Metal   109   -­‐0.61   -­‐66.5  -­‐  Newspapers   896   -­‐0.18   -­‐161.3  -­‐  Plastics   800   1.52   1  216  -­‐  Electronics   329   -­‐0.05   -­‐16.5  -­‐  Hazardous  waste   49   -­‐0.3   -­‐14.7  Waste  totals       106  Source:  Johansson  et  al.  (2012b).  Baseline  Results    The  baseline  emissions  in  the  different  categories  discussed  above  are  summarised  in  Table  7.    Table  7.  Summary  of  baseline  emissions  for  SRS  Emission  Categories   Ton  CO2e/year   Ton  CO2e/capita  Energy      -­‐Heating  &  cooling   12,169.3   0.64  -­‐Electricity   7,932   0.42  -­‐Water  &  infrastructure   2,325   0.12  -­‐Locally  produced  energy   -­‐  557.7   -­‐0.03  Transportation        -­‐Residents     9,074.2   0.48  -­‐Workers   7,468.1   0.39  -­‐  Goods  &  services   3,289.2   0.17  Waste   106   0.01  Baseline  totals   41,806.1   2.20  Source:  Johansson  et  al.  (2012b).    The   baseline   emissions   of   2.2   ton   CO2e/capita   are   low   compared   with   the  emissions   from   the   average   person   living   in   Stockholm,   which   in   2010   were  roughly   3.2   ton   CO2e/capita   (City   of   Stockholm,   2010a).   At   first   glance,  emissions  from  the  SRS  area  are  significantly  lower,  due  in  part  to  some  of  the  emission   factors   having   been   updated   since   the   City   of   Stockholm’s   last  calculation   in   2010,   lowering   SRS’s   emissions.   However,   the   major   reason   for  the   lower   emissions   for   SRS   is   that   not   all   emissions   are   included   due   to   the  choice  of  focusing  on  activities  directly  related  to  SRS’s  geographical  area.  When  moving   from   the   city   level   to   the   urban   district   level,   an   additional   ‘layer’   of  emissions  is  added,  namely  those  that  take  place  within  the  city  but  not  within  the   specific   urban   district   representing   these   emissions,   which   can   have   a  significant   impact   on   total   emissions.   For   example,   in   the   case   of   SRS,   many  societal   functions   that   a   resident   uses   regularly,   such   as   hospitals,   libraries,  sports  centres,  etc.,  are  not  included  in  the  geographical  area.  That  means  that  the   urban   district’s   emissions   are   too   low   compared   with   the   total   city  emissions.   On   the   other   hand,   two   of   the   main   sources   of   emissions   in  Stockholm  are  located  in  the  SRS  area,  since  it  includes  the  combined  heat  and  power   plant   and   the   harbour.   There   is   also   the   question   of   the   thoroughfare,     13  
  19. 19. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!  since   most   of   the   traffic   it   carries   is   not   related   to   the   SRS   district   itself.   The  emissions  from  these  sources  are  instead  scaled  to  proportion  of  the  residents,  so   that   every   person   in   Stockholm   gets   an   equal   share.   If   emissions   from  activities  not  included  in  the  geographical  baseline  but  connected  to  the  City  of  Stockholm   were   to   be   included   in   the   calculations,   such   as   emissions   from  hospitals,   sports   centres,   public   offices   and   so   forth,   the   annual   emissions   of   a  resident  in  SRS  would  increase  by  at  least  0.5  ton  CO2e  per  capita  (Fahlberg  et  al.,  2007).   7. Magnitude  Study  of  Possible  Roadmap  Actions    Once   the   baseline   has   been   clearly   defined,   the   next   step   in   the   process   is   to  develop   roadmap   actions.   They   can   be   divided   into   three   categories;   energy  efficiency   measures,   fuel   switching   and   behaviour   changes   that   lead   to   either  fuel  switching  or  energy  efficiency.  In  order  to  discuss  the  magnitude  of  effect  of  possible  road  mapping  actions,  here  we  calculated  the  emission  reductions  for  a  few   simple   examples.   These   actions   represent   interpretations   of   SRS’s   overall  environmental  programme  and  the  environmental  requirements  for  the  second  build   phase   of   SRS.   Note   that   the   actions   only   represent   magnitudes   of  emissions   reductions,   and   no   decisions   to   implement   them   in   any   way   have  been   made   by   the   stakeholders   involved.   Note   also   that   no   consideration   has  been   given   so   far   to   the   effect   that   different   actions   have   on   each   other.   The  following  actions  were  identified  for  study  (Johansson  et  al.,  2012a):   • Solar  photo  voltaics  (PV)  -­‐  Solar  PV  should  generate  at  least  30%  of  the   building  electricity  used  for  lifts,  ventilation,  pumps,  etc.     • Phase  2  Energy  demands  –  In  the  second  build  phase  of  SRS,  an  energy   target   is   to   reduce   the   total   energy   use   excluding   household   and   commercial   electricity   to   55   kWh/m2   and   year.   This   would   then   serve   as   a  limit  for  future  build  phases.       • Residential   travel   –   One   goal   is   that   residents   should   be   able   to   travel   using  low  CO2e  vehicles.  In  the  magnitude  of  reductions  calculated  here,   50%  of  transportation  by  gasoline  car  is  shifted  to  either  electric  car  or   hybrid  car  (gasoline  &  electricity).    The  calculated  emissions  reductions  are  summarised  in  Table  8.      Table  8  Magnitude  of  emissions  reduction  effect  of  possible  road  mapping  actions   Emissions   Per  capita  emissions  Possible  roadmapping  action   reduction     reduction     [ton  CO2e/year]   [ton  CO2e/cap,   year]  Solar  PV  –  30  %  of  building   438   0.02  electricity  Phase  2  Energy  demands   3,095   0.16  Residents  travel:  Gasoline  à   2,870   0.15  Electric  car  Residents  travel:  Gasoline  à   616   0.03  Hybrid  car  Source:  Johansson  et  al.  (2012a).     14  
  20. 20. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!    A  first  comparison  between  the  baseline  emissions  (Table  7)  and  the  reductions  through   roadmap   actions   (Table   8)   demonstrates   that   it   is   difficult   to   become  climate  positive  on  a  local  scale.  As  regards  possible  road  mapping  actions,  even  the  more  ambitious  actions,  such  as  influencing  the  residents’  travel  behaviour,  only  reduce  total  baseline  emissions  by  about  10%  each.  Furthermore,  while  the  current   proposed   actions   only   represent   a   fraction   of   possible   emissions   cuts,  they  are  in  themselves  rather  ambitious.  The  baseline  energy  use  for  buildings  in   the   baseline   is   already   25%   lower   than   the   current   Swedish   building   code  requirements   (Boverket,   2011)   and   implementing   55   kwh/m2   and   year   is   close  to   the   Swedish   passive   house   standard.     Therefore,   it   seems   unlikely   that   the  SRS  district  will  manage  to  achieve  climate  positive  status  just  by  roadmapping  action  strategies  within  the  urban  district  itself.   8. Credits  –  Roadmapping  Actions  Outside  the  District  We   can   see   from   comparing   the   magnitudes   of   possible   roadmapping   actions   to  reduce   emissions   (through   energy   efficiency,   fuel   switching   and   influencing  residents   behaviour)   against   the   baseline   emissions   that   it   will   be   difficult   to  reach   a   climate   positive   outcome   solely   by   local   actions   within   SRS’s  geographical   boundary.   The   CCI   framework   recognises   this   problem   and   the  solution   proposed   is   to   implement   credits   (CCI,   2011),   using   the   same   general  principle  as  credits  from  the  flexible  Kyoto  mechanisms  (Joint  Implementation,  Clean   Development   Mechanism   and   Emissions   Trading)   (UNFCC,   1998).  Through   these,   the   emissions   of   a   country,   city   or   area   are   cut   by   emissions  reductions   in   other   places   (referred   to   as   certified   emission   reductions,   or  credits   for   short).   However,   there   are   significant   differences   between   CCI’s  credits   and   those   relating   to   flexible   mechanisms,   the   major   difference   being  that   CCI’s   credits   have   to   be   generated  locally,  in  relation  to  the  urban  district  itself.  To  be  able  to  generate  a  credit  according  to  CCI,  the  urban  district  must  be  connected   through   relevant   infrastructure   (energy,   transport,   waste)   or   other  relevant   processes   (for   instance   decision   making   processes,   rules,   regulations,  standards).   Note   also   that   the   purchase   of   credits   not   generated   in   connection  with   the   urban   district   (as   can   be   done   with   credits   from   the   flexible   Kyoto  mechanisms)  is  not  accepted  as  a  reduction  strategy  (CCI,  2011).  Once  the  sum  of   emissions   reductions   from   roadmap   actions   and   credits   is   greater   than   the  baseline  emissions,  the  area  is  considered  to  be  climate  positive.  To   demonstrate   what   could   be   considered   local   credits,   we   calculated   the  magnitude  of  emission  reductions  from  a  few  possible  actions  (Johansson  et  al.,  2012a).   All   of   the   actions   build   on   official   documents   (environmental   plans,  applications,   etc.),   for   inspiration,   but   note   that   all   credit   actions   are   just   a  representation  of  magnitudes  and  do  not  represent  actual  emission  reductions  decided   by   the   stakeholders   involved.   The   magnitudes   of   the   following   credit  actions  are  shown  in  Table  9  (Johansson  et  al.,  2012a):     • Electrification   of   the   harbour   –   The   harbour   area   is   close   to   SRS   and   the   idea  is  to  connect  ships  and  ferries  that  make  port  on  a  regular  basis  to   the  electricity  grid  instead  of  having  them  idle  using  diesel  engines.  The   magnitudes   of   two   different   credit   actions   are   calculated,   one   where     15  
  21. 21. Submitted  article  –  Journal  of  Energy  Policy    Do  not  copy  or  redistribute!   diesel  is  replaced  by  electricity  from  the  Nordic  electricity  mix  and  one   where  it  is  replaced  by  wind  power.     • Workers’  travel  –  One  goal  is  that  workers  should  be  able  to  travel  using   low  CO2e  vehicles.  Just  as  in  the  case  of  residents’  travel,  the  calculated   magnitudes   are   represented   by   50%   of   transportation   by   gasoline   car   being  shifted  to  either  electric  car  or  hybrid  car  (gasoline  &  electricity).    Table  9.  Magnitude  of  emissions  reduction  effect  achieved  by  possible  credit  actions   Emissions   Per  capita  emissions  Possible  credit  action   reduction     reduction     [ton  CO2e/year]   [ton  CO2e/cap,  year]  Electrification  of  the  harbour   3,199   0.17  -­‐  Diesel  à  Wind  power  Electrification  of  the  harbour   2,423   0.13  -­‐  Diesel  à  Nordic  electricity  mix  Workers’  commuting     1,688   0.09  Gasoline  à  Electric  car  Workers’  commuting     362   0.019  Gasoline  à  Hybrid  car  Source:  Johansson  et  al.  (2012a).      Just  as  in  the  case  of  roadmapping  actions,  the  magnitudes  of  emission  cuts  from  credit  actions  are  small  relative  to  the  baseline  emissions.  Even  a  major  action  such  as  electrification  of  the  harbour  represents  roughly  only  a  10%  reduction  in  emissions,  while  the  other  actions  have  smaller  effects  (Table  9).  The  credit  action   effects   calculated   of   course   represent   only   a   small   proportion   of   possible  actions  that  the  City  of  Stockholm  could  undertake.     9. Discussion  It  is  difficult  to  achieve  climate  positive  status  on  local  scale  with  planned  actions  Even   adding   roadmapping   and   credit   actions   together,   it   will   still   be   a   challenge  for   SRS   to   become   climate   positive.   However,   the   roadmapping   process   can  serve  as  a  catalyst  to  start  a  process  of  implementing  innovative  solutions  with  important   stakeholders   in   the   development   process,   such   as   the   landowner,  relevant   authorities,   construction   companies,   (future)   residents,   etc.   Since   the  road  mapping  process  has  the  explicit  goal  of  achieving  a  climate  positive  urban  district,   the   actions   and   their   calculated   magnitude   in   relation   to   the   baseline  emissions   can   serve   as   a   very   powerful   motivational   tool   and   driving   force   to  reach  the  targets  that  would  otherwise  have  been  impossible.  Credits  can  then  be  used  when  local  options  run  out.      The   potential   and   risks   of   credits   –   a   driving   force   and   possible  greenwashing  The  key  aspect  of  the  concept  of  credits  is  how  the  term  ‘local’  is  defined.  Since  some   of   the   systems   connected   to   the   urban   district   span   a   vast   geographical     16  

×