John Billings: Developing a new predictive risk model

733 views

Published on

Published in: Health & Medicine, Business
  • Be the first to comment

John Billings: Developing a new predictive risk model

  1. 1. John Billings July, 2013 New York University Robert F. Wagner Graduate School of Public Service DEVELOPING A NEW PREDICTIVE RISK MODEL
  2. 2. July, 2013 New York University Robert F. Wagner Graduate School of Public Service DEVELOPING A NEW PREDICTIVE RISK MODELS CONTINUING WORK ON
  3. 3. WHAT I’M GOING TO TALK ABOUT
  4. 4. WHAT I’M GOING TO TALK ABOUT • What to predict? – Costs – Future admissions – Something else
  5. 5. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? – Avoid “over-fitting” – Positive predictive value (PPV) – Sensitivity, receiver operating curve C statistic, etc.
  6. 6. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? – Inpatient – A&E – Outpatient – GP electronic medical records – Social care information – –
  7. 7. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? • What variables to use? – Demographics – Prior utilization (frequency/recentness) – Prior cost – Diagnostic history – Test results (GP electronic medical records) – Other stuff (missed appointments, unplanned A&E follow-up visits, etc)
  8. 8. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? • What variables to use? • Who is in the denominator? – Patients with prior emergency admission (PARR) – Patients with any HES history (inpatient, A&E, outpatient) – All registered patients
  9. 9. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? • What variables to use? • Who is in the denominator? • Can you apply "national" models to local data? – Do you have to develop your own local model – Or can you use coefficients from national model
  10. 10. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? • What variables to use? • Who is in the denominator? • Can you apply "national" models to local data? • What interventions work best for high risk patients?
  11. 11. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? • What variables to use? • Who is in the denominator? • Can you apply "national" models to local data? • What interventions work best for high risk patients? It really doesn’t matter very much
  12. 12. WHAT I’M GOING TO TALK ABOUT • What to predict? • How to assess performance of the model? • What data bases to use? • What variables to use? • Who is in the denominator? • Can you apply "national" models to local data? • What interventions work best for high risk patients? I really have no idea
  13. 13. OUR CONTINUING WORK • Data from convenience sample of five PCT areas ‒ Cornwall ‒ Croydon ‒ Kent ‒ Newham ‒ Redbridge
  14. 14. OUR CONTINUING WORK • Data from convenience sample of five PCT areas • Used four data sets ‒ SUS inpatient ‒ SUS A&E ‒ SUS outpatient ‒ GP electronic medical records
  15. 15. OUR CONTINUING WORK • Data from convenience sample of five PCT areas • Used four data sets • Data are for period August 2007 – September 2010 ‒ Looked back 2 years ‒ Predict admission in next 12 months with 2-month data lage
  16. 16. OUR CONTINUING WORK • Data from convenience sample of five PCT areas • Used four data sets • Data are for period August 2007 – September 2010 • Modeling limited to patients age 18-95
  17. 17. WHAT TO PREDICT?
  18. 18. WHAT TO PREDICT? • Future costs (non-obstetric) • Future emergency admissions (or readmissions) – All non-obstetric – “Preventable/avoidable” (ambulatory care sensitive) • Multiple future emergency admissions (or readmissions) • •
  19. 19. HOW TO ASSESS PERFORMANCE OF THE MODEL
  20. 20. HOW TO ASSESS PERFORMANCE OF THE MODEL • Avoid “over-fitting” – Develop the model with a 50% sample – Test the coefficients on the other half
  21. 21. HOW TO ASSESS PERFORMANCE OF THE MODEL • Avoid “over-fitting” – Develop the model with a 50% sample – Test the coefficients on the other half • Remember there are tradeoffs between accuracy (as measured by PPV) and number of patients “flagged” (as measured by sensitivity)
  22. 22. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780 These are results from the “full model” - Inpatient - A&E - Outpatient - GP electronic medical records But comparable results for other models - IP - IP+A&E - IP+A&E+OP
  23. 23. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  24. 24. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  25. 25. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  26. 26. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  27. 27. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  28. 28. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  29. 29. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  30. 30. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  31. 31. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  32. 32. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level RiskScore Flagged TruePos PPV Sensitivity 1-5 1,836,099 94,692 0.052 1.000 5-10 463,346 61,498 0.133 0.649 10-15 181,910 39,986 0.220 0.422 15-20 101,346 28,697 0.283 0.303 20-25 64,821 21,601 0.333 0.228 25-30 44,142 16,672 0.378 0.176 30-35 31,653 13,196 0.417 0.139 35-40 23,360 10,516 0.450 0.111 40-45 17,747 8,494 0.479 0.090 45-50 13,564 6,921 0.510 0.073 50-55 10,545 5,669 0.538 0.060 55-60 8,157 4,581 0.562 0.048 60-65 6,360 3,735 0.587 0.039 65-70 4,911 3,034 0.618 0.032 70-75 3,806 2,453 0.645 0.026 75-80 2,885 1,921 0.666 0.020 80-85 2,124 1,478 0.696 0.016 85-90 1,567 1,114 0.711 0.012 90-95 1,022 754 0.738 0.008 95-100 567 437 0.771 0.005 Top 1% 18,363 8,722 0.475 0.092 Top 5% 91,837 26,991 0.294 0.285 ROC C Statistic 0.780
  33. 33. HOW TO ASSESS PERFORMANCE OF THE MODEL • Avoid “over-fitting” – Develop the model with a 50% sample – Test the coefficients on the other half • Remember there are tradeoffs between accuracy (as measured by PPV) and number of patients “flagged” (as measured by sensitivity) • For most users, accuracy is likely to be most important (this is not a screening test to identify some dread disease) – From a “business case” perspective, it is important not to target patients who will not have a future admission
  34. 34. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,836,099 94,692 0.052 1.000 118 12 16 24 5-10 463,346 61,498 0.133 0.649 349 35 49 70 10-15 181,910 39,986 0.220 0.422 645 64 90 129 15-20 101,346 28,697 0.283 0.303 889 89 125 178 20-25 64,821 21,601 0.333 0.228 1,107 111 155 221 25-30 44,142 16,672 0.378 0.176 1,311 131 184 262 30-35 31,653 13,196 0.417 0.139 1,507 151 211 301 35-40 23,360 10,516 0.450 0.111 1,690 169 237 338 40-45 17,747 8,494 0.479 0.090 1,863 186 261 373 45-50 13,564 6,921 0.510 0.073 2,063 206 289 413 50-55 10,545 5,669 0.538 0.060 2,270 227 318 454 55-60 8,157 4,581 0.562 0.048 2,477 248 347 495 60-65 6,360 3,735 0.587 0.039 2,685 269 376 537 65-70 4,911 3,034 0.618 0.032 2,926 293 410 585 70-75 3,806 2,453 0.645 0.026 3,136 314 439 627 75-80 2,885 1,921 0.666 0.020 3,387 339 474 677 80-85 2,124 1,478 0.696 0.016 3,765 376 527 753 85-90 1,567 1,114 0.711 0.012 4,110 411 575 822 90-95 1,022 754 0.738 0.008 4,730 473 662 946 95-100 567 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  35. 35. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,836,099 94,692 0.052 1.000 118 12 16 24 5-10 463,346 61,498 0.133 0.649 349 35 49 70 10-15 181,910 39,986 0.220 0.422 645 64 90 129 15-20 101,346 28,697 0.283 0.303 889 89 125 178 20-25 64,821 21,601 0.333 0.228 1,107 111 155 221 25-30 44,142 16,672 0.378 0.176 1,311 131 184 262 30-35 31,653 13,196 0.417 0.139 1,507 151 211 301 35-40 23,360 10,516 0.450 0.111 1,690 169 237 338 40-45 17,747 8,494 0.479 0.090 1,863 186 261 373 45-50 13,564 6,921 0.510 0.073 2,063 206 289 413 50-55 10,545 5,669 0.538 0.060 2,270 227 318 454 55-60 8,157 4,581 0.562 0.048 2,477 248 347 495 60-65 6,360 3,735 0.587 0.039 2,685 269 376 537 65-70 4,911 3,034 0.618 0.032 2,926 293 410 585 70-75 3,806 2,453 0.645 0.026 3,136 314 439 627 75-80 2,885 1,921 0.666 0.020 3,387 339 474 677 80-85 2,124 1,478 0.696 0.016 3,765 376 527 753 85-90 1,567 1,114 0.711 0.012 4,110 411 575 822 90-95 1,022 754 0.738 0.008 4,730 473 662 946 95-100 567 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  36. 36. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,836,099 94,692 0.052 1.000 118 12 16 24 5-10 463,346 61,498 0.133 0.649 349 35 49 70 10-15 181,910 39,986 0.220 0.422 645 64 90 129 15-20 101,346 28,697 0.283 0.303 889 89 125 178 20-25 64,821 21,601 0.333 0.228 1,107 111 155 221 25-30 44,142 16,672 0.378 0.176 1,311 131 184 262 30-35 31,653 13,196 0.417 0.139 1,507 151 211 301 35-40 23,360 10,516 0.450 0.111 1,690 169 237 338 40-45 17,747 8,494 0.479 0.090 1,863 186 261 373 45-50 13,564 6,921 0.510 0.073 2,063 206 289 413 50-55 10,545 5,669 0.538 0.060 2,270 227 318 454 55-60 8,157 4,581 0.562 0.048 2,477 248 347 495 60-65 6,360 3,735 0.587 0.039 2,685 269 376 537 65-70 4,911 3,034 0.618 0.032 2,926 293 410 585 70-75 3,806 2,453 0.645 0.026 3,136 314 439 627 75-80 2,885 1,921 0.666 0.020 3,387 339 474 677 80-85 2,124 1,478 0.696 0.016 3,765 376 527 753 85-90 1,567 1,114 0.711 0.012 4,110 411 575 822 90-95 1,022 754 0.738 0.008 4,730 473 662 946 95-100 567 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  37. 37. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Cumulative at Cut-Off Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,836,099 94,692 0.052 1.000 118 12 16 24 5-10 463,346 61,498 0.133 0.649 349 35 49 70 10-15 181,910 39,986 0.220 0.422 645 64 90 129 15-20 101,346 28,697 0.283 0.303 889 89 125 178 20-25 64,821 21,601 0.333 0.228 1,107 111 155 221 25-30 44,142 16,672 0.378 0.176 1,311 131 184 262 30-35 31,653 13,196 0.417 0.139 1,507 151 211 301 35-40 23,360 10,516 0.450 0.111 1,690 169 237 338 40-45 17,747 8,494 0.479 0.090 1,863 186 261 373 45-50 13,564 6,921 0.510 0.073 2,063 206 289 413 50-55 10,545 5,669 0.538 0.060 2,270 227 318 454 55-60 8,157 4,581 0.562 0.048 2,477 248 347 495 60-65 6,360 3,735 0.587 0.039 2,685 269 376 537 65-70 4,911 3,034 0.618 0.032 2,926 293 410 585 70-75 3,806 2,453 0.645 0.026 3,136 314 439 627 75-80 2,885 1,921 0.666 0.020 3,387 339 474 677 80-85 2,124 1,478 0.696 0.016 3,765 376 527 753 85-90 1,567 1,114 0.711 0.012 4,110 411 575 822 90-95 1,022 754 0.738 0.008 4,730 473 662 946 95-100 567 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  38. 38. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Within Individual Vigintile Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,339,559 33,194 0.024 0.351 40 4 6 8 5-10 259,924 21,512 0.076 0.227 157 16 22 31 10-15 69,275 11,289 0.140 0.119 337 34 47 67 15-20 29,429 7,096 0.194 0.075 504 50 71 101 20-25 15,750 4,929 0.238 0.052 670 67 94 134 25-30 9,013 3,476 0.278 0.037 815 82 114 163 30-35 5,613 2,680 0.323 0.028 990 99 139 198 35-40 3,591 2,022 0.360 0.021 1,142 114 160 228 40-45 2,610 1,573 0.376 0.017 1,214 121 170 243 45-50 1,767 1,252 0.415 0.013 1,342 134 188 268 50-55 1,300 1,088 0.456 0.011 1,563 156 219 313 55-60 951 846 0.471 0.009 1,738 174 243 348 60-65 748 701 0.484 0.007 1,871 187 262 374 65-70 524 581 0.526 0.006 2,201 220 308 440 70-75 389 532 0.578 0.006 2,351 235 329 470 75-80 318 443 0.582 0.005 2,333 233 327 467 80-85 193 364 0.654 0.004 2,792 279 391 558 85-90 185 360 0.661 0.004 2,948 295 413 590 90-95 138 317 0.697 0.003 3,735 374 523 747 95-100 130 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  39. 39. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Within Individual Vigintile Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,339,559 33,194 0.024 0.351 40 4 6 8 5-10 259,924 21,512 0.076 0.227 157 16 22 31 10-15 69,275 11,289 0.140 0.119 337 34 47 67 15-20 29,429 7,096 0.194 0.075 504 50 71 101 20-25 15,750 4,929 0.238 0.052 670 67 94 134 25-30 9,013 3,476 0.278 0.037 815 82 114 163 30-35 5,613 2,680 0.323 0.028 990 99 139 198 35-40 3,591 2,022 0.360 0.021 1,142 114 160 228 40-45 2,610 1,573 0.376 0.017 1,214 121 170 243 45-50 1,767 1,252 0.415 0.013 1,342 134 188 268 50-55 1,300 1,088 0.456 0.011 1,563 156 219 313 55-60 951 846 0.471 0.009 1,738 174 243 348 60-65 748 701 0.484 0.007 1,871 187 262 374 65-70 524 581 0.526 0.006 2,201 220 308 440 70-75 389 532 0.578 0.006 2,351 235 329 470 75-80 318 443 0.582 0.005 2,333 233 327 467 80-85 193 364 0.654 0.004 2,792 279 391 558 85-90 185 360 0.661 0.004 2,948 295 413 590 90-95 138 317 0.697 0.003 3,735 374 523 747 95-100 130 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  40. 40. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Within Individual Vigintile Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,339,559 33,194 0.024 0.351 40 4 6 8 5-10 259,924 21,512 0.076 0.227 157 16 22 31 10-15 69,275 11,289 0.140 0.119 337 34 47 67 15-20 29,429 7,096 0.194 0.075 504 50 71 101 20-25 15,750 4,929 0.238 0.052 670 67 94 134 25-30 9,013 3,476 0.278 0.037 815 82 114 163 30-35 5,613 2,680 0.323 0.028 990 99 139 198 35-40 3,591 2,022 0.360 0.021 1,142 114 160 228 40-45 2,610 1,573 0.376 0.017 1,214 121 170 243 45-50 1,767 1,252 0.415 0.013 1,342 134 188 268 50-55 1,300 1,088 0.456 0.011 1,563 156 219 313 55-60 951 846 0.471 0.009 1,738 174 243 348 60-65 748 701 0.484 0.007 1,871 187 262 374 65-70 524 581 0.526 0.006 2,201 220 308 440 70-75 389 532 0.578 0.006 2,351 235 329 470 75-80 318 443 0.582 0.005 2,333 233 327 467 80-85 193 364 0.654 0.004 2,792 279 391 558 85-90 185 360 0.661 0.004 2,948 295 413 590 90-95 138 317 0.697 0.003 3,735 374 523 747 95-100 130 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  41. 41. TRADE-OFF BETWEEN ACCURACY AND NUMBER OF CASES FLAGGED Within Individual Vigintile Level Business Case Analysis - Emergency IP Costs RiskScore Flagged TruePos PPV Sensitivity Mean Cost Next 12 Mos 10% Reduction 15% Reduction 20% Reduction 1-5 1,339,559 33,194 0.024 0.351 40 4 6 8 5-10 259,924 21,512 0.076 0.227 157 16 22 31 10-15 69,275 11,289 0.140 0.119 337 34 47 67 15-20 29,429 7,096 0.194 0.075 504 50 71 101 20-25 15,750 4,929 0.238 0.052 670 67 94 134 25-30 9,013 3,476 0.278 0.037 815 82 114 163 30-35 5,613 2,680 0.323 0.028 990 99 139 198 35-40 3,591 2,022 0.360 0.021 1,142 114 160 228 40-45 2,610 1,573 0.376 0.017 1,214 121 170 243 45-50 1,767 1,252 0.415 0.013 1,342 134 188 268 50-55 1,300 1,088 0.456 0.011 1,563 156 219 313 55-60 951 846 0.471 0.009 1,738 174 243 348 60-65 748 701 0.484 0.007 1,871 187 262 374 65-70 524 581 0.526 0.006 2,201 220 308 440 70-75 389 532 0.578 0.006 2,351 235 329 470 75-80 318 443 0.582 0.005 2,333 233 327 467 80-85 193 364 0.654 0.004 2,792 279 391 558 85-90 185 360 0.661 0.004 2,948 295 413 590 90-95 138 317 0.697 0.003 3,735 374 523 747 95-100 130 437 0.771 0.005 5,529 553 774 1,106 Top 1% 18,363 8,722 0.475 0.092 1,805 181 271 361 Top 5% 91,837 26,991 0.294 0.285 970 97 146 194 ROC C Statistic 0.780
  42. 42. WHAT DATA BASES TO USE?
  43. 43. WHAT DATA BASES TO USE? • HES (or SUS) – Inpatient – A&E – Outpatient • GP Electronic Medical Records • Social care information • • • How good is the data set? • How hard is the data set to use? • Does it improve case finding/accuracy?
  44. 44. WHAT DATA BASES TO USE? • HES (or SUS) – Easy to obtain/relatively standardised – Inpatient – A&E – Outpatient • GP Electronic Medical Records • Social care information • •
  45. 45. WHAT DATA BASES TO USE? • HES (or SUS) – Inpatient – Fairly rich/reasonably accurate/valuable DX/procedure info – A&E – Outpatient • GP Electronic Medical Records • Social care information • •
  46. 46. WHAT DATA BASES TO USE? • HES (or SUS) – Inpatient – A&E – Not so standardised, DX info limited, some procedure info – Outpatient • GP Electronic Medical Records • Social care information • •
  47. 47. WHAT DATA BASES TO USE? • HES (or SUS) – Inpatient – A&E – Outpatient – Very limited (visit volume, missed attendances, spec type) • GP Electronic Medical Records • Social care information • •
  48. 48. WHAT DATA BASES TO USE? • HES (or SUS) – Inpatient – A&E – Outpatient • GP Electronic Medical Records • Social care information • • - Difficult to obtain (historically) - Difficult to link (historically) - Difficult to use - Read code nightmares - Not standardised
  49. 49. WHAT DATA BASES TO USE? • HES (or SUS) – Inpatient – A&E – Outpatient • GP Electronic Medical Records • Social care information • • - Difficult to obtain (historically) - Difficult to link (historically) - Difficult to use - Not standardised
  50. 50. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY
  51. 51. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY • Additional data sets do improve case finding – Especially A&E and GP data – But these improvements are modest ▪ 23% with full data sets at risk score 50+ cut-off ▪ 31% with full data sets at risk score 30+ cut-off
  52. 52. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780
  53. 53. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780
  54. 54. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400
  55. 55. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400 + 455 + 145
  56. 56. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400 + 455 + 145 + 2186 + 497
  57. 57. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY • Additional data sets do improve case finding – Especially A&E and GP data – But these improvements are modest ▪ 23% with full data sets at risk score 50+ cut-off ▪ 31% with full data sets at risk score 30+ cut-off • There is no loss in predictive accuracy with inclusion of additional data sets
  58. 58. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400
  59. 59. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400 + 455 + 145
  60. 60. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400 + 455 + 145 + 2186 + 497
  61. 61. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY • Additional data sets do improve case finding – Especially A&E and GP data – But these improvements are modest ▪ 23% with full data sets at risk score 50+ cut-off ▪ 31% with full data sets at risk score 30+ cut-off • There is no loss in predictive accuracy with inclusion of additional data sets • Improved case finding is greatest for lower risk patients using GP data
  62. 62. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY IP Data IP+AE Data IP+AE+OP Data IP+AE+OP+GP Data RiskScore TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity TruePos PPV Sensitivity 1-5 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 94,692 0.052 1.000 5-10 54,450 0.126 0.575 56,117 0.128 0.593 56,438 0.131 0.596 61,498 0.133 0.649 10-15 33,053 0.219 0.349 34,102 0.221 0.360 35,033 0.223 0.370 39,986 0.220 0.422 15-20 22,898 0.285 0.242 23,166 0.293 0.245 24,261 0.290 0.256 28,697 0.283 0.303 20-25 16,181 0.346 0.171 16,915 0.347 0.179 17,719 0.344 0.187 21,601 0.333 0.228 25-30 12,670 0.385 0.134 13,182 0.386 0.139 13,754 0.383 0.145 16,672 0.378 0.176 30-35 10,061 0.421 0.106 10,555 0.422 0.111 11,010 0.419 0.116 13,196 0.417 0.139 35-40 8,130 0.449 0.086 8,600 0.450 0.091 8,986 0.448 0.095 10,516 0.450 0.111 40-45 6,700 0.477 0.071 7,139 0.478 0.075 7,421 0.476 0.078 8,494 0.479 0.090 45-50 5,535 0.501 0.058 5,976 0.504 0.063 6,167 0.499 0.065 6,921 0.510 0.073 50-55 4,627 0.529 0.049 5,027 0.531 0.053 5,172 0.523 0.055 5,669 0.538 0.060 55-60 3,862 0.551 0.041 4,222 0.551 0.045 4,359 0.543 0.046 4,581 0.562 0.048 60-65 3,239 0.574 0.034 3,555 0.569 0.038 3,658 0.567 0.039 3,735 0.587 0.039 65-70 2,711 0.593 0.029 3,012 0.590 0.032 3,041 0.587 0.032 3,034 0.618 0.032 70-75 2,245 0.617 0.024 2,481 0.612 0.026 2,519 0.610 0.027 2,453 0.645 0.026 75-80 1,816 0.634 0.019 2,049 0.639 0.022 2,064 0.631 0.022 1,921 0.666 0.020 80-85 1,418 0.666 0.015 1,662 0.656 0.018 1,646 0.654 0.017 1,478 0.696 0.016 85-90 1,064 0.679 0.011 1,293 0.674 0.014 1,276 0.679 0.013 1,114 0.711 0.012 90-95 769 0.710 0.008 932 0.688 0.010 935 0.702 0.010 754 0.738 0.008 95-100 478 0.748 0.005 592 0.725 0.006 586 0.728 0.006 437 0.771 0.005 Top 1% 8,214 0.447 0.087 8,353 0.455 0.088 8,410 0.458 0.089 8,722 0.475 0.092 Top 5% 24,873 0.271 0.263 25,355 0.276 0.268 25,712 0.280 0.272 26,991 0.294 0.285 ROC C Statistic 0.731 0.745 0.752 0.780 + 494 + 400 + 455 + 145 + 2186 + 497
  63. 63. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY • Additional data sets do improve case finding – Especially A&E and GP data – But these improvements are modest ▪ 23% with full data sets at risk score 50+ cut-off ▪ 31% with full data sets at risk score 30+ cut-off • There is no loss in predictive accuracy with inclusion of additional data sets • Improved case finding is greatest for lower risk patients using GP data • But it is still difficult to identify patients early in any cycle of emergency admissions (that first emergency admission)
  64. 64. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY Proportion of Patients With No Emergency Admissions Prior 2 Years Risk Score Threshold IP Data IPAE Data IPAEOP Data IPAEOPGP Data Risk Score 50+ 0.3% 1.2% 2.3% 3.2% Risk Score 30+ 2.7% 4.4% 6.3% 12.4% Top 1% 1.5% 2.9% 4.2% 6.5% Top 5% 25.9% 26.4% 26.7% 30.8%
  65. 65. WHAT DATA BASES TO USE? IMPROVING CASE FINDING/ACCURACY Proportion of Patients With No Emergency Admissions Prior 2 Years Risk Score Threshold IP Data IPAE Data IPAEOP Data IPAEOPGP Data Risk Score 50+ 0.3% 1.2% 2.3% 3.2% Risk Score 30+ 2.7% 4.4% 6.3% 12.4% Top 1% 1.5% 2.9% 4.2% 6.5% Top 5% 25.9% 26.4% 26.7% 30.8% Risk Score Cut-Off Level = 17
  66. 66. WHAT VARIABLES TO USE?
  67. 67. WHAT VARIABLES TO USE? • Demographics – Age – Gender – IMD (GP practice) – Months registered at current GP practicre
  68. 68. WHAT VARIABLES TO USE? • Demographics • Inpatient data – Number of emergency admissions for various periods prior two years – Number of elective admissions for various periods prior year – Any day case/night attendance prior year – History of 16 diagnostic conditions (chronic) prior two years – Charlson Index
  69. 69. WHAT VARIABLES TO USE? • Demographics • Inpatient data – Number of emergency admissions for various periods prior two years – Number of elective admissions for various periods prior year – Any day case/night attendance prior year – History of 16 diagnostic conditions (chronic) prior two years – Charlson Index Note that we did not use cost as a variable - Can be difficult to obtain and apply - Added little, if any, predictive power
  70. 70. WHAT VARIABLES TO USE? • Demographics • Inpatient data • A&E data – Number of A&E visits for various periods prior two years – A&E procedures performed for various periods prior two years – Unplanned follow-up A&E visits for various periods prior two years
  71. 71. WHAT VARIABLES TO USE? • Demographics • Inpatient data • A&E data • Outpatient data – Number of outpatient visits for various periods prior two years – Number of outpatient visits missed for various periods prior two years
  72. 72. WHAT VARIABLES TO USE? • Demographics • Inpatient data • A&E data • Outpatient data • GP electronic medical records – Number long term conditions, specific DX conditions, QOF registries – Drug prescription history – BMI, current smoker – HbA1c, high blood pressure, glomerular filtration rate – Number of GP visits – Increase in GP visits last 12 months – Number of phone consults last 90 days
  73. 73. WHAT VARIABLES TO USE? A full list of variables used and their definitions will available imminently at Nuffield website
  74. 74. WHO IS IN THE DENOMINATOR?
  75. 75. WHO IS IN THE DENOMINATOR? • Patients with prior emergency admissions [PARR] • Patients with any HES history [inpatient, A&E, outpatient] • All registered patients
  76. 76. WHO IS IN THE DENOMINATOR? Demominator Flagged TruePos PPV Risk Score Cut-Off 50+ Had Emergency Admission Prior 12 Months (PARR) 5,622 3,339 0.594 Any SUS record last 2 years 8,273 4,532 0.548 GP registry population July, 2009 9,892 5,172 0.523 Risk Score Cut-Off 30+ Had Emergency Admission Prior 12 Months (PARR) 19,058 8,818 0.463 Any SUS record last 2 years 24,833 10,671 0.430 GP registry population July, 2009 26,304 11,011 0.419
  77. 77. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA?
  78. 78. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? • For each of the five sites: – We created individual site models – Created models using the other four sites, and then applied the 4-site coefficients to local data – Then compared case finding and accuracy
  79. 79. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? IPOPAE IPOPAEGP Indiv Site Regression Four Site Regression Indiv Site Regression Four Site Regression TruePos PPV TruePos PPV TruePos PPV TruePos PPV Cornwall Risk Score 50+ 1,041 0.520 754 0.548 1,176 0.545 952 0.556 Risk Score 30+ 2,439 0.406 1,970 0.426 3,032 0.410 2,746 0.411 Croydon Risk Score 50+ 1,089 0.528 1,192 0.523 1,182 0.550 1,230 0.537 Risk Score 30+ 2,134 0.444 2,258 0.424 2,610 0.442 2,502 0.437 Kent Risk Score 50+ 1,565 0.513 1,387 0.519 1,736 0.521 1,873 0.493 Risk Score 30+ 3,372 0.401 3,067 0.403 4,079 0.397 4,432 0.369 Newham Risk Score 50+ 734 0.552 858 0.517 768 0.566 835 0.523 Risk Score 30+ 1,409 0.450 1,564 0.414 1,570 0.439 1,798 0.409 Redbridge Risk Score 50+ 743 0.512 863 0.495 807 0.522 607 0.519 Risk Score 30+ 1,656 0.420 1,693 0.415 1,905 0.423 1,390 0.436
  80. 80. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? IPOPAE IPOPAEGP Indiv Site Regression Four Site Regression Indiv Site Regression Four Site Regression TruePos PPV TruePos PPV TruePos PPV TruePos PPV Cornwall Risk Score 50+ 1,041 0.520 754 0.548 1,176 0.545 952 0.556 Risk Score 30+ 2,439 0.406 1,970 0.426 3,032 0.410 2,746 0.411 Croydon Risk Score 50+ 1,089 0.528 1,192 0.523 1,182 0.550 1,230 0.537 Risk Score 30+ 2,134 0.444 2,258 0.424 2,610 0.442 2,502 0.437 Kent Risk Score 50+ 1,565 0.513 1,387 0.519 1,736 0.521 1,873 0.493 Risk Score 30+ 3,372 0.401 3,067 0.403 4,079 0.397 4,432 0.369 Newham Risk Score 50+ 734 0.552 858 0.517 768 0.566 835 0.523 Risk Score 30+ 1,409 0.450 1,564 0.414 1,570 0.439 1,798 0.409 Redbridge Risk Score 50+ 743 0.512 863 0.495 807 0.522 607 0.519 Risk Score 30+ 1,656 0.420 1,693 0.415 1,905 0.423 1,390 0.436
  81. 81. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? IPOPAE IPOPAEGP Indiv Site Regression Four Site Regression Indiv Site Regression Four Site Regression TruePos PPV TruePos PPV TruePos PPV TruePos PPV Cornwall Risk Score 50+ 1,041 0.520 754 0.548 1,176 0.545 952 0.556 Risk Score 30+ 2,439 0.406 1,970 0.426 3,032 0.410 2,746 0.411 Croydon Risk Score 50+ 1,089 0.528 1,192 0.523 1,182 0.550 1,230 0.537 Risk Score 30+ 2,134 0.444 2,258 0.424 2,610 0.442 2,502 0.437 Kent Risk Score 50+ 1,565 0.513 1,387 0.519 1,736 0.521 1,873 0.493 Risk Score 30+ 3,372 0.401 3,067 0.403 4,079 0.397 4,432 0.369 Newham Risk Score 50+ 734 0.552 858 0.517 768 0.566 835 0.523 Risk Score 30+ 1,409 0.450 1,564 0.414 1,570 0.439 1,798 0.409 Redbridge Risk Score 50+ 743 0.512 863 0.495 807 0.522 607 0.519 Risk Score 30+ 1,656 0.420 1,693 0.415 1,905 0.423 1,390 0.436
  82. 82. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? IPOPAE IPOPAEGP Indiv Site Regression Four Site Regression Indiv Site Regression Four Site Regression TruePos PPV TruePos PPV TruePos PPV TruePos PPV Cornwall Risk Score 50+ 1,041 0.520 754 0.548 1,176 0.545 952 0.556 Risk Score 30+ 2,439 0.406 1,970 0.426 3,032 0.410 2,746 0.411 Croydon Risk Score 50+ 1,089 0.528 1,192 0.523 1,182 0.550 1,230 0.537 Risk Score 30+ 2,134 0.444 2,258 0.424 2,610 0.442 2,502 0.437 Kent Risk Score 50+ 1,565 0.513 1,387 0.519 1,736 0.521 1,873 0.493 Risk Score 30+ 3,372 0.401 3,067 0.403 4,079 0.397 4,432 0.369 Newham Risk Score 50+ 734 0.552 858 0.517 768 0.566 835 0.523 Risk Score 30+ 1,409 0.450 1,564 0.414 1,570 0.439 1,798 0.409 Redbridge Risk Score 50+ 743 0.512 863 0.495 807 0.522 607 0.519 Risk Score 30+ 1,656 0.420 1,693 0.415 1,905 0.423 1,390 0.436
  83. 83. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? IPOPAE IPOPAEGP Indiv Site Regression Four Site Regression Indiv Site Regression Four Site Regression TruePos PPV TruePos PPV TruePos PPV TruePos PPV Cornwall Risk Score 50+ 1,041 0.520 754 0.548 1,176 0.545 952 0.556 Risk Score 30+ 2,439 0.406 1,970 0.426 3,032 0.410 2,746 0.411 Croydon Risk Score 50+ 1,089 0.528 1,192 0.523 1,182 0.550 1,230 0.537 Risk Score 30+ 2,134 0.444 2,258 0.424 2,610 0.442 2,502 0.437 Kent Risk Score 50+ 1,565 0.513 1,387 0.519 1,736 0.521 1,873 0.493 Risk Score 30+ 3,372 0.401 3,067 0.403 4,079 0.397 4,432 0.369 Newham Risk Score 50+ 734 0.552 858 0.517 768 0.566 835 0.523 Risk Score 30+ 1,409 0.450 1,564 0.414 1,570 0.439 1,798 0.409 Redbridge Risk Score 50+ 743 0.512 863 0.495 807 0.522 607 0.519 Risk Score 30+ 1,656 0.420 1,693 0.415 1,905 0.423 1,390 0.436
  84. 84. CAN YOU APPLY “NATIONAL” MODELS TO LOCAL DATA? IPOPAE IPOPAEGP Indiv Site Regression Four Site Regression Indiv Site Regression Four Site Regression TruePos PPV TruePos PPV TruePos PPV TruePos PPV Cornwall Risk Score 50+ 1,041 0.520 754 0.548 1,176 0.545 952 0.556 Risk Score 30+ 2,439 0.406 1,970 0.426 3,032 0.410 2,746 0.411 Croydon Risk Score 50+ 1,089 0.528 1,192 0.523 1,182 0.550 1,230 0.537 Risk Score 30+ 2,134 0.444 2,258 0.424 2,610 0.442 2,502 0.437 Kent Risk Score 50+ 1,565 0.513 1,387 0.519 1,736 0.521 1,873 0.493 Risk Score 30+ 3,372 0.401 3,067 0.403 4,079 0.397 4,432 0.369 Newham Risk Score 50+ 734 0.552 858 0.517 768 0.566 835 0.523 Risk Score 30+ 1,409 0.450 1,564 0.414 1,570 0.439 1,798 0.409 Redbridge Risk Score 50+ 743 0.512 863 0.495 807 0.522 607 0.519 Risk Score 30+ 1,656 0.420 1,693 0.415 1,905 0.423 1,390 0.436
  85. 85. WHAT INTERVENTIONS WORK BEST FOR HIGH RISK PATIENTS?
  86. 86. WHAT INTERVENTIONS WORK BEST FOR HIGH RISK PATIENTS? I really have no idea…
  87. 87. WHAT INTERVENTIONS WORK BEST FOR HIGH RISK PATIENTS? Well, actually I have plenty of ideas… - just no strong evidence on much
  88. 88. WHAT TO DO • Model development limitations – Predict risks of expensive things you think you do something about – Don’t stress too much about which data bases (but more are likely better) – Recognize the trade-offs between model accuracy and sensitivity
  89. 89. WHAT TO DO • Model development limitations – Predict risks of expensive things you think you do something about – Don’t stress too much about which data bases (but more are likely better) – Recognize the trade-offs between model accuracy and sensitivity • Intervention design – Design the intervention after the risk model has been developed – Use data from model development to help design the intervention – Recognize you are probably going to need more information – Get the incentives right
  90. 90. WHAT TO DO • Model development limitations – Predict risks of expensive things you think you do something about – Don’t stress too much about which data bases (but more are likely better) – Recognize the trade-offs between model accuracy and sensitivity • Intervention design – Design the intervention after the risk model has been developed – Use data from model development to help design the intervention – Recognize you are probably going to need more information – Get the incentives right • Intervention implementation – Roll it out in at least quasi-experimental mode – Track “dosage” levels (who does what to whom and how) – Avoid enrollment criteria “leakage” – Evaluate impact of the intervention as rigorously as possible
  91. 91. WHAT TO DO • Model development limitations – Predict risks of expensive things you think you do something about – Don’t stress too much about which data bases (but more are likely better) – Recognize the trade-offs between model accuracy and sensitivity • Intervention design – Design the intervention after the risk model has been developed – Use data from model development to help design the intervention – Recognize you are probably going to need more information – Get the incentives right • Intervention implementation – Roll it out in at least quasi-experimental mode – Track “dosage” levels (who does what to whom and how) – Avoid enrollment criteria “leakage” – Evaluate impact of the intervention as rigorously as possible
  92. 92. WHAT TO DO • Model development limitations – Predict risks of expensive things you think you do something about – Don’t stress too much about which data bases (but more are likely better) – Recognize the trade-offs between model accuracy and sensitivity • Intervention design – Design the intervention after the risk model has been developed – Use data from model development to help design the intervention – Recognize you are probably going to need more information – Get the incentives right • Intervention implementation – Roll it out in at least quasi-experimental mode – Track “dosage” levels (who does what to whom and how) – Avoid enrollment criteria “leakage” – Evaluate impact of the intervention as rigorously as possible

×