Coupling Neural Networks to GCMs

Noah Brenowitz
July 30, 2019
Princeton AOS Workshop, Princeton, NJ
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
Coupling Neural Networks
to GCMs
1
Climate Modeling at Vulcan Inc.
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
2
Christopher Bretherton
University of Washington
Oliver Fuhrer, MeteoSwiss
More people to
come….
Research will be open source and openly published
Collaborating with the FV3 Team at GFDL
Coarse-resolution dynamics
Apparent heating (K/day)
Apparent moistening
(g/kg/day)
s = T +
g
cp
z q =
Mass water vapor
Mass dry air
@s
@t
+ v · rs = Q1
@q
@t
+ v · rq = Q2
@u
@t
+ v · ru + f ⇥ u
1
⇢
rp = Q3
SW+ LW radiation, latent heating, etc
https://trello.com/c/wV03fVXiz
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
One climate model grid box.
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
4Photo Credit: Becky Hornbrook, published on WCRP webpage
Traditional method for parameterization
5
GigaLES, Khairtoudinov
Climate models have biases in mean state
CMIP5
(models)
GPCP
(observations)
Hwang and Frierson (2013)
Machine learning builds black boxes
Many 1000s of parameters
Need a lot of data
Designed to be trained not interpreted
Examples: Decision trees, neural networks, support vector
machines
Easy to tune/train Easy to interpret
Many parameters Few parameters
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
Neural networks are a popular machine learning model
x1 = (A1x0 + b1)
x2 = (A2x1 + b2)
...
y = out(Anxn 1 + bn)
Input #1
Input #2
Input #3
Input #4
Output #1
Output #2
Output #3
Output #4
Hidden
layer
Input
layer
Activation
layer
Output
layer
Activation function
Optimum
Traditional
parametrizations
How too few parameters may hurt.
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
1 0
A climate model time step
Radiative
Transfer
Cloud
Microphysics
Cumulus
convection
And many more
Dry
Dynamics
4980
50405100
51605160
5220
5220
5220
5280
5280
5340
5400
5460
5520
5580
5640
5640
5700
5700
5700
5760
5760
5820
5880
5880
University of Wyoming
−40
−35
−35
−35
−30
−30
−25
−20
−20
−20
−15
−15
−15−15
−15−15
−15
−15
−10
−10
−10
−10
−5
−5
−5
−5
−5
−5
−5
−5
University of Wyoming
−20 543
4 03953
1 BIKF
−37 522
2 BGBW
−11 574
34
−29 544
11 32618 −34 533
16 PABR
−30 530
5 PAOT
−32 528
5 PAOM
−36 516
13 PABE
−32 522
5 PAMC
−30 527
3 PAFA
−36 518
17 PANC
−36 516
25 PASN
−38 522
9 PACD −39 517
5 PADQ
−38 525
15 PAYA
−29 542
8 PANT
−26 550
32 PASY
−27 533
0 YVQ
−40 510
9 YUX
−24 554
18 YZT
−25 552
30 WSE
−14 576
10 WSA
−15 566
12 YQI
−18 565
3 WMW
−17 569
2 AYT
−16 560
9 YZV
−16 566
21 YJT
−24 546
27 YYR
−27 547
26 YAH
−23 552
31 YMO−26 553
18 WPL
−22 552
3 YQD
−34 532
11 YVP
−37 536
3 WPH
−28 550
18 ZXS
−42 506
8 YFB
−29 544
7 YYQ
−40 510
4 YRB
−33 526
12 YCB
−31 533
23 YBK
−25 536
2 YSM
−26 541
21 YYE
−14 498
10 YEV
−36 527
9 YXY
−11 584
33 KEY
−13 583
26 MFL
−13 582
29 JAX
−14 580
27 CHS
−12 584
25 TBW
−11 583
30 TLH
−13 582
30 FFC
−14 583
22 BMX
−11 585
24 LIX
−13 584
9 JAN
−12 584
2 LCH
−12 582
3 SHV
−13 579
2 FWD
−10 587
4 BRO
−10 585
5 CRP
−11 580
24 DRT
−16 573
19 MAF
−20 568
18 TUS
−15 572
18 NKX
−15 576
15 MHX
−15 578
9 GSO
−16 577
17 RNK
−16 580
4 BNA
−13 580
3 LZK
−15 574
2 OUN
−14 572
2 AMA
−17 571
29 EPZ
−17 570
3 ABQ
−19 571
4 FGZ
−17 573
10 VEF−11 580
14 VBG
−17 573
10 WAL
−16 574
16 IAD−17 575
5 ILN
−14 576
3 SGF
−14 573
3 DDC
−14 574
1 TOP
−16 572
8 DNR
−17 573
7 GJT
−12 582
11 REV
−11 584
17 OAK
−17 567
5 OKX
−17 567
5 ALB−17 570
4 BUF
−16 572
30 OAX
−16 572
17 LBF
−15 574
45 SLC
−12 578
13 LKN
−14 581
3 MFR
−16 566
11 DTX
−15 561
1 APX−17 563
14 GRB
−18 567
20 MPX
−17 569
21 ABR
−16 571
45 RAP−15 573
42 RIW
−14 577
3 BOI
−15 574
2 SLE
−16 566
16 CAR
−21 560
16 INL
−16 569
18 BIS
−14 567
4 GGW
−15 570
2 TFX
−16 569
2 OTX
−16 567
15 UIL
−18 559
15 CWVK
−19 569
12 1Y7
−20 561
3 GYX
−15 568
10 DVN
−19 559
5 CHH
−15 573
19 ILX
−12 574
2 LMN
−9 586
9 ADN
−9 584
5 76458
−9 587
13 76526
−7 588
17 76612 −7 589
16 76679
−13 578
13 TXKF
−13 582
25 MYNN
−7 586
0 MWCR
−8 584
23 MKJP
−9 586
8 MDSD
−9 584
23 TJSJ
−6 587
17 MZBZ
−4 587
34 MROC
−5 584
32 TFFR
−4 588
39 TTPP
−6 586
8 TNCC
−3 588
35 SKSP
−4 589
36 SKBQ
−7 588
0 SKBG
−5 588
−6 589
2 SBBV
−8 590
35 PHLI
−7 589
22 PHTO
12Z 23 Apr 2019 500 hPa
Near-global aqua-planet (NG-Aqua) simulation generated by the System for Atmospheric Modeling (Δ" = 4km)
11
https://vimeo.com/299128849
Coarse-grain data to 160 km boxes
12
Training regionTesting region
Coarse-graining
A
B
C
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
13
Parameterization as function approximation
!(#; %)
Yanai, et. al. (1973)
64 inputs + SST, SOLIN
68 outputs
Training Approach 1
1. Use finite differences to compute residual tendencies
2. Train neural network :
Q2 ⇡
¯qv(t + 3 h) ¯qv(t)
3 h
gLS(t), gLS(t) = ¯v · r¯qv
q, s, SHF, LHF, TOA Q1, Q2
Neural
Network
(1 layer of 256 nodes ≅ 70,000 parameters)
Neural networks can diagnose Q1 and Q2
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
15
Neural Network
~ 100,000 parameters
Millions of samples
Heating (K/day)
(finite diff.)
!" ≈ .50
Similar to Krasnopolsky et. al. (2013)
But its coupled!
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
1 6
Neural
Network
Dry
Dynamics
Test with single column model
1 7
Neural
Network
Single
column
model
Single Column Dynamics
x = [qv, s]
y = [SHF,LHF, TOASW,#]
dx
dt
= f(x, y(t)) + gLS(t)
Prognostic variables
Auxiliary variables
Uh oh…temperature = 1035 K after 1 day
Time (d)
p (hPa)
Is fitting Q1 and Q2 the right approach?
Assumes that model dynamics are continuous in
time
• But they are not (Donahue and Caldwell, 2018)
Assumes moist physics tendencies are available
and accurate
• Not true for DYAMOND outputs
• Not true for observations
Does not ensure good predictions over many time
steps
Fitting the approximate Q1 and Q2 is
equivalent to minimizing one-step error
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
50
100
150
200
Error
Truth
Prediction
Hours
…but that does not ensure longer term
performance
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
50
100
150
200
Error
Truth
Prediction
Hours
Stable and accurate single column model simulations
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
23
Community Atmosphere
Model Version 5 (CAM5)
Single Column Mode
(default physics, no
chemistry)
Humidity Anomaly
(from true zonal mean)
(g/kg)
days Brenowitz and Bretherton (2018)
Will it work in a GCM?
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
2 4
Neural
Network
Dry Dynamical
Core
Brenowitz and Bretherton (2019)
Coupled simulations with this model blow-up!
25
• 160 km resolution
• System for Atmos. Modeling
(SAM)
• Fortran calling python
0 5 10 15 20
x (1000 km )
0.0
2.5
5.0
7.5
10.0
y(1000km)
0
15
30
45
60
50 75 100125
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
The neural network finds spurious correlations!
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
26
Humidity at 200 mb and precipitation
Synchronization is hard for machine learning
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
27
Pendulums Synchronize People clapping
Distinct sub-systems (clappers, pendulums) are perfectly correlated
Timme, Max Planck Institute for Dynamics and Self-organization
Domain
Knowledge
Domain knowledge
Ignoring upper atmospheric humidity stabilizes coupled
simulation
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
28
Precipitable water after 5 days
Brenowitz and Bretherton, 2019
Improved coupled forecast accuracy (RMSE of humidity)
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
Longer-term
drifts in climate
30
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
Biases in circulation
31
Zonal+time mean over days 105-110
Peering into The Black Box
32
Lower Tropospheric Stability (LTS)
• T(600 mb) – T(surface)
• Strength of inversion
Mid tropospheric humidity
• ∫"##
$%
&' ()/+
• Strongly controls amount of
precipitation
Systematically Vary Inputs
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
33
34
Insert conditionally averaged input variables into
the neural network
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
Increasing LTS increases the depth of convection
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
35
Increasing moisture strengthens convection
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
36
37
Linearize the Neural Network
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
Linearized
Response
Function
38
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
!(#$, #&)
!((, ))
Similar to Kuang (2018)
Sensitivity of SGS moistening at 600 mb to
1 g/kg of additional moisture at 750 mb.
Linearized
Response
Function
39
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
!(#$, #&)
!((, ))
Similar to Kuang (2018)
The neural network finds spurious correlations!
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
40
Humidity at 200 mb and precipitation
Couple Linearized Response Functions to Gravity Waves
!′# + ̅!&'( = *
+
,
-./
-!
!((1) +
-./
-3
3( 1
41
5
3′# + 63&'′ = *
+
,
-.7
-!
!((1) +
-.7
-3
3( 1
41
5
'#
( = −
-
-9
7
:;/<( − 4'(
:'′ =
=
=&
/
>?
=
=&
@+'′ and <( = A
B(
̅B
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
41Similar to Kuang (2018)
Eigenmodes of this Linear System
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
42
With upper atmospheric input (unstable in GCM) Without upper atmospheric input (stable in GCM)
Phase speed (m/s) Phase speed (m/s)
Growthrate(1/day)
Wavenumber
(1/km)
Wavenumber
(1/km)
A scary eigenmode (w/ unstable NN)
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
43
A moisture-mode-like standing instability (w/ stable NN)
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
44
Conclusions and Future Directions
• Coupling with GCM makes ML parameterization hard
• Synchronization due to time-scale separation pollutes our training data
• Ignoring synchronized inputs stabilizes spatially extended simulations
• Accurate for ~2 days for precipitation, ~5 days for humidity and temperature
• Longer term drifts in the climate
• The NN is physically plausible:
• Increase humidity controls the strength of the predicted precipitation
• Increasing tropospheric stability controls the height of the predictions
• Linearized Response Functions can be coupled to waves
• Plot wave-speed/growth rate curves and wave structures.
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
45
References
Brenowitz, N. D., & Bretherton, C. S. Spatially Extended Tests of a Neural Network
Parametrization Trained by Coarse-graining. JAMES (2019).
Brenowitz, N. D. & Bretherton, C. S. Prognostic Validation of a Neural Network Unified
Physics Parameterization. Geophys. Res. Lett. 17, 2493 (2018).
S. Rasp, M. S. Pritchard, P. Gentine, Deep learning to represent subgrid processes in
climate models. Proc. Natl. Acad. Sci. U. S. A. 115, 9684–9689 (2018).
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
46
©2018 Vulcan Inc. All rights reserved. The information herein is for informational purposes only and represents the current view of Vulcan Inc. as of the date of this
presentation. VULCAN INC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.
47
Conditionally Averaged-data (|Lat| < 23 deg)
NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
48
Total Population Precipitation – Evaporation Net heating
1 of 48

Recommended

HACKSing heterogeneity in cell motility by
HACKSing heterogeneity in cell motilityHACKSing heterogeneity in cell motility
HACKSing heterogeneity in cell motilityHee June Choi
399 views43 slides
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e... by
www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...www.gravity.psu.edu/events/conferences/inaugural/t... 	 www.gravity.psu.edu/e...
www.gravity.psu.edu/events/conferences/inaugural/t... www.gravity.psu.edu/e...MedicineAndHealthCancer
374 views40 slides
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity by
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLeonid Abdurakhimov
163 views10 slides
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model by
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical ModelGPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical ModelLeonid Krinitsky
101 views3 slides
Localized Electrons with Wien2k by
Localized Electrons with Wien2kLocalized Electrons with Wien2k
Localized Electrons with Wien2kABDERRAHMANE REGGAD
4.9K views34 slides
Measurement-induced long-distance entanglement of superconducting qubits usin... by
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
32 views15 slides

More Related Content

What's hot

68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez by
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario MartínezICREA
657 views75 slides
Methods available in WIEN2k for the treatment of exchange and correlation ef... by
Methods available in WIEN2k for the treatment  of exchange and correlation ef...Methods available in WIEN2k for the treatment  of exchange and correlation ef...
Methods available in WIEN2k for the treatment of exchange and correlation ef...ABDERRAHMANE REGGAD
6.3K views41 slides
16.01.15@jc東大 by
16.01.15@jc東大16.01.15@jc東大
16.01.15@jc東大Yoshitaro Takaesu
129 views25 slides
GW170817: Dawn of multi-messenger astronomy by
GW170817: Dawn of multi-messenger astronomy GW170817: Dawn of multi-messenger astronomy
GW170817: Dawn of multi-messenger astronomy Amruta Jaodand
569 views19 slides
6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re... by
6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re...6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re...
6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re...Ilmas Bayati
332 views49 slides
Wind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind Turbine by
Wind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind TurbineWind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind Turbine
Wind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind TurbineIlmas Bayati
292 views21 slides

What's hot(20)

68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez by ICREA
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
68th ICREA Colloquium "Results from the LHC Run II" by Mario Martínez
ICREA657 views
Methods available in WIEN2k for the treatment of exchange and correlation ef... by ABDERRAHMANE REGGAD
Methods available in WIEN2k for the treatment  of exchange and correlation ef...Methods available in WIEN2k for the treatment  of exchange and correlation ef...
Methods available in WIEN2k for the treatment of exchange and correlation ef...
ABDERRAHMANE REGGAD6.3K views
GW170817: Dawn of multi-messenger astronomy by Amruta Jaodand
GW170817: Dawn of multi-messenger astronomy GW170817: Dawn of multi-messenger astronomy
GW170817: Dawn of multi-messenger astronomy
Amruta Jaodand569 views
6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re... by Ilmas Bayati
6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re...6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re...
6-DoF Hydrodynamic Modelling For Wind Tunnel Hybrid/HIL tests of FOWT: the re...
Ilmas Bayati332 views
Wind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind Turbine by Ilmas Bayati
Wind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind TurbineWind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind Turbine
Wind Tunnel 2-DoF Hybrid/Hil tests on the OC5 Floating Offshore Wind Turbine
Ilmas Bayati292 views
Dust obscured star formation in high redshift clusters by Joana Santos
Dust obscured star formation in high redshift clustersDust obscured star formation in high redshift clusters
Dust obscured star formation in high redshift clusters
Joana Santos15 views
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究 by Toshihiro FUJII
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
Toshihiro FUJII384 views
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告 by Toshihiro FUJII
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
Toshihiro FUJII317 views
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro... by Maosi Chen
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Agu chen a31_g-2917_retrieving temperature and relative humidity profiles fro...
Maosi Chen49 views
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie... by Cristian Randieri PhD
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
Quantum networks with superconducting circuits and optomechanical transducers by Ondrej Cernotik
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducers
Ondrej Cernotik63 views
LinuxFest NW - Using Postgis To Add Some Spatial Flavor To Your App by Steven Pousty
LinuxFest NW - Using Postgis To Add Some Spatial Flavor To Your AppLinuxFest NW - Using Postgis To Add Some Spatial Flavor To Your App
LinuxFest NW - Using Postgis To Add Some Spatial Flavor To Your App
Steven Pousty1.4K views
Relativistic Compact Outflows in Radio-quiet AGN by Ashkbiz Danehkar
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGN
Ashkbiz Danehkar835 views
A. De Simone: The Quest for Dark Matter: Update and News by SEENET-MTP
A. De Simone: The Quest for Dark Matter: Update and NewsA. De Simone: The Quest for Dark Matter: Update and News
A. De Simone: The Quest for Dark Matter: Update and News
SEENET-MTP638 views
First results from the full-scale prototype for the Fluorescence detector Arr... by Toshihiro FUJII
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
Toshihiro FUJII312 views

Similar to Coupling Neural Networks to GCMs

TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the... by
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...grssieee
362 views28 slides
IGARSS11_takaku_dsm_report.ppt by
IGARSS11_takaku_dsm_report.pptIGARSS11_takaku_dsm_report.ppt
IGARSS11_takaku_dsm_report.pptgrssieee
395 views32 slides
CAPE Buoy by
CAPE BuoyCAPE Buoy
CAPE BuoyEli Ellsworth
737 views76 slides
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o... by
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...Deltares
643 views60 slides
Generating haplotype phased reference genomes for the dikaryotic wheat strip... by
Generating haplotype phased reference genomes  for the dikaryotic wheat strip...Generating haplotype phased reference genomes  for the dikaryotic wheat strip...
Generating haplotype phased reference genomes for the dikaryotic wheat strip...Benjamin Schwessinger
936 views29 slides
Contribution to the investigation of wind characteristics and assessment of w... by
Contribution to the investigation of wind characteristics and assessment of w...Contribution to the investigation of wind characteristics and assessment of w...
Contribution to the investigation of wind characteristics and assessment of w...Université de Dschang
2.8K views41 slides

Similar to Coupling Neural Networks to GCMs(20)

TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the... by grssieee
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
TU1.L10 - Arctic Sea Ice dynamics for Global Climate Models: Results from the...
grssieee362 views
IGARSS11_takaku_dsm_report.ppt by grssieee
IGARSS11_takaku_dsm_report.pptIGARSS11_takaku_dsm_report.ppt
IGARSS11_takaku_dsm_report.ppt
grssieee395 views
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o... by Deltares
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
Deltares643 views
Generating haplotype phased reference genomes for the dikaryotic wheat strip... by Benjamin Schwessinger
Generating haplotype phased reference genomes  for the dikaryotic wheat strip...Generating haplotype phased reference genomes  for the dikaryotic wheat strip...
Generating haplotype phased reference genomes for the dikaryotic wheat strip...
Contribution to the investigation of wind characteristics and assessment of w... by Université de Dschang
Contribution to the investigation of wind characteristics and assessment of w...Contribution to the investigation of wind characteristics and assessment of w...
Contribution to the investigation of wind characteristics and assessment of w...
Centennial Talk Hydrates by stalnaker
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydrates
stalnaker595 views
Improving Physical Parametrizations in Climate Models using Machine Learning by Noah Brenowitz
Improving Physical Parametrizations in Climate Models using Machine LearningImproving Physical Parametrizations in Climate Models using Machine Learning
Improving Physical Parametrizations in Climate Models using Machine Learning
Noah Brenowitz516 views
Sci ml 2020 on bayesian by markvard
Sci ml 2020 on bayesianSci ml 2020 on bayesian
Sci ml 2020 on bayesian
markvard55 views
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium... by Arkansas State University
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
Vapor Combustor Improvement Project LinkedIn Presentation February 2016 by Tim Krimmel, MEM
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Tim Krimmel, MEM191 views
3178_IGARSS11.ppt by grssieee
3178_IGARSS11.ppt3178_IGARSS11.ppt
3178_IGARSS11.ppt
grssieee242 views
Monitoring Oceans - Chris Atherton - SRD23 by SURFevents
Monitoring Oceans - Chris Atherton - SRD23Monitoring Oceans - Chris Atherton - SRD23
Monitoring Oceans - Chris Atherton - SRD23
SURFevents15 views
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic... by Igor Sfiligoi
 NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic... NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
Igor Sfiligoi6K views
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING by Arghya_D
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELINGSTUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
STUDIES ON INTEGRATED BIO-HYDROGEN PRODUCTION PROCESS-EXPERIMENTAL AND MODELING
Arghya_D68 views
Physics Data Processing - The online connection by Sander Klous
Physics Data Processing - The online connectionPhysics Data Processing - The online connection
Physics Data Processing - The online connection
Sander Klous711 views

Recently uploaded

Vegetable grafting: A new crop improvement approach.pptx by
Vegetable grafting: A new crop improvement approach.pptxVegetable grafting: A new crop improvement approach.pptx
Vegetable grafting: A new crop improvement approach.pptxHimul Suthar
11 views69 slides
selection of preformed arch wires during the alignment stage of preadjusted o... by
selection of preformed arch wires during the alignment stage of preadjusted o...selection of preformed arch wires during the alignment stage of preadjusted o...
selection of preformed arch wires during the alignment stage of preadjusted o...MaherFouda1
8 views100 slides
Major important agricultural crop Diseases list by
Major important agricultural crop Diseases listMajor important agricultural crop Diseases list
Major important agricultural crop Diseases listYuvarajYuva27
9 views21 slides
vitamine B1.pptx by
vitamine B1.pptxvitamine B1.pptx
vitamine B1.pptxajithkilpart
37 views22 slides
Assessment and Evaluation GROUP 3.pdf by
Assessment and Evaluation GROUP 3.pdfAssessment and Evaluation GROUP 3.pdf
Assessment and Evaluation GROUP 3.pdfkimberlyndelgado18
15 views10 slides
Exploring the nature and synchronicity of early cluster formation in the Larg... by
Exploring the nature and synchronicity of early cluster formation in the Larg...Exploring the nature and synchronicity of early cluster formation in the Larg...
Exploring the nature and synchronicity of early cluster formation in the Larg...Sérgio Sacani
1.6K views12 slides

Recently uploaded(20)

Vegetable grafting: A new crop improvement approach.pptx by Himul Suthar
Vegetable grafting: A new crop improvement approach.pptxVegetable grafting: A new crop improvement approach.pptx
Vegetable grafting: A new crop improvement approach.pptx
Himul Suthar11 views
selection of preformed arch wires during the alignment stage of preadjusted o... by MaherFouda1
selection of preformed arch wires during the alignment stage of preadjusted o...selection of preformed arch wires during the alignment stage of preadjusted o...
selection of preformed arch wires during the alignment stage of preadjusted o...
MaherFouda18 views
Major important agricultural crop Diseases list by YuvarajYuva27
Major important agricultural crop Diseases listMajor important agricultural crop Diseases list
Major important agricultural crop Diseases list
YuvarajYuva279 views
Exploring the nature and synchronicity of early cluster formation in the Larg... by Sérgio Sacani
Exploring the nature and synchronicity of early cluster formation in the Larg...Exploring the nature and synchronicity of early cluster formation in the Larg...
Exploring the nature and synchronicity of early cluster formation in the Larg...
Sérgio Sacani1.6K views
Worldviews and their (im)plausibility: Science and Holism by JohnWilkins48
Worldviews and their (im)plausibility: Science and HolismWorldviews and their (im)plausibility: Science and Holism
Worldviews and their (im)plausibility: Science and Holism
JohnWilkins4849 views
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe... by Anmol Vishnu Gupta
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...
Study on Drug Drug Interaction Through Prescription Analysis of Type II Diabe...
Note on the Riemann Hypothesis by vegafrank2
Note on the Riemann HypothesisNote on the Riemann Hypothesis
Note on the Riemann Hypothesis
vegafrank29 views
Exploring_The_Unthinkable_ Franco Gollo.pdf by draconox80
Exploring_The_Unthinkable_ Franco Gollo.pdfExploring_The_Unthinkable_ Franco Gollo.pdf
Exploring_The_Unthinkable_ Franco Gollo.pdf
draconox806 views
Micelle Drug Delivery System (Nanotechnology).pptx by ANANYA KUMAR
Micelle Drug Delivery System (Nanotechnology).pptxMicelle Drug Delivery System (Nanotechnology).pptx
Micelle Drug Delivery System (Nanotechnology).pptx
ANANYA KUMAR5 views
INTRODUCTION TO PLANT SYSTEMATICS.pptx by RASHMI M G
INTRODUCTION TO PLANT SYSTEMATICS.pptxINTRODUCTION TO PLANT SYSTEMATICS.pptx
INTRODUCTION TO PLANT SYSTEMATICS.pptx
RASHMI M G 5 views
Oral_Presentation_by_Fatma (2).pdf by fatmaalmrzqi
Oral_Presentation_by_Fatma (2).pdfOral_Presentation_by_Fatma (2).pdf
Oral_Presentation_by_Fatma (2).pdf
fatmaalmrzqi8 views
Real Science Radio - Dr Paul Homan Climate Change.pptx by Fred Williams
Real Science Radio - Dr Paul Homan Climate Change.pptxReal Science Radio - Dr Paul Homan Climate Change.pptx
Real Science Radio - Dr Paul Homan Climate Change.pptx
Fred Williams8 views
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F... by SwagatBehera9
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
SwagatBehera96 views
Generative AI to Accelerate Discovery of Materials by Deakin University
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of Materials
GLUCONEOGENESIS Presentation.pptx by GunjanBaisla
GLUCONEOGENESIS Presentation.pptxGLUCONEOGENESIS Presentation.pptx
GLUCONEOGENESIS Presentation.pptx
GunjanBaisla6 views

Coupling Neural Networks to GCMs

  • 1. Noah Brenowitz July 30, 2019 Princeton AOS Workshop, Princeton, NJ NOAH D. BRENOWITZ - NOAHB@VULCAN.COM Coupling Neural Networks to GCMs 1
  • 2. Climate Modeling at Vulcan Inc. NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 2 Christopher Bretherton University of Washington Oliver Fuhrer, MeteoSwiss More people to come…. Research will be open source and openly published Collaborating with the FV3 Team at GFDL
  • 3. Coarse-resolution dynamics Apparent heating (K/day) Apparent moistening (g/kg/day) s = T + g cp z q = Mass water vapor Mass dry air @s @t + v · rs = Q1 @q @t + v · rq = Q2 @u @t + v · ru + f ⇥ u 1 ⇢ rp = Q3 SW+ LW radiation, latent heating, etc https://trello.com/c/wV03fVXiz NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 4. One climate model grid box. NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 4Photo Credit: Becky Hornbrook, published on WCRP webpage
  • 5. Traditional method for parameterization 5 GigaLES, Khairtoudinov
  • 6. Climate models have biases in mean state CMIP5 (models) GPCP (observations) Hwang and Frierson (2013)
  • 7. Machine learning builds black boxes Many 1000s of parameters Need a lot of data Designed to be trained not interpreted Examples: Decision trees, neural networks, support vector machines Easy to tune/train Easy to interpret Many parameters Few parameters NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 8. Neural networks are a popular machine learning model x1 = (A1x0 + b1) x2 = (A2x1 + b2) ... y = out(Anxn 1 + bn) Input #1 Input #2 Input #3 Input #4 Output #1 Output #2 Output #3 Output #4 Hidden layer Input layer Activation layer Output layer Activation function
  • 9. Optimum Traditional parametrizations How too few parameters may hurt. NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 10. 1 0 A climate model time step Radiative Transfer Cloud Microphysics Cumulus convection And many more Dry Dynamics 4980 50405100 51605160 5220 5220 5220 5280 5280 5340 5400 5460 5520 5580 5640 5640 5700 5700 5700 5760 5760 5820 5880 5880 University of Wyoming −40 −35 −35 −35 −30 −30 −25 −20 −20 −20 −15 −15 −15−15 −15−15 −15 −15 −10 −10 −10 −10 −5 −5 −5 −5 −5 −5 −5 −5 University of Wyoming −20 543 4 03953 1 BIKF −37 522 2 BGBW −11 574 34 −29 544 11 32618 −34 533 16 PABR −30 530 5 PAOT −32 528 5 PAOM −36 516 13 PABE −32 522 5 PAMC −30 527 3 PAFA −36 518 17 PANC −36 516 25 PASN −38 522 9 PACD −39 517 5 PADQ −38 525 15 PAYA −29 542 8 PANT −26 550 32 PASY −27 533 0 YVQ −40 510 9 YUX −24 554 18 YZT −25 552 30 WSE −14 576 10 WSA −15 566 12 YQI −18 565 3 WMW −17 569 2 AYT −16 560 9 YZV −16 566 21 YJT −24 546 27 YYR −27 547 26 YAH −23 552 31 YMO−26 553 18 WPL −22 552 3 YQD −34 532 11 YVP −37 536 3 WPH −28 550 18 ZXS −42 506 8 YFB −29 544 7 YYQ −40 510 4 YRB −33 526 12 YCB −31 533 23 YBK −25 536 2 YSM −26 541 21 YYE −14 498 10 YEV −36 527 9 YXY −11 584 33 KEY −13 583 26 MFL −13 582 29 JAX −14 580 27 CHS −12 584 25 TBW −11 583 30 TLH −13 582 30 FFC −14 583 22 BMX −11 585 24 LIX −13 584 9 JAN −12 584 2 LCH −12 582 3 SHV −13 579 2 FWD −10 587 4 BRO −10 585 5 CRP −11 580 24 DRT −16 573 19 MAF −20 568 18 TUS −15 572 18 NKX −15 576 15 MHX −15 578 9 GSO −16 577 17 RNK −16 580 4 BNA −13 580 3 LZK −15 574 2 OUN −14 572 2 AMA −17 571 29 EPZ −17 570 3 ABQ −19 571 4 FGZ −17 573 10 VEF−11 580 14 VBG −17 573 10 WAL −16 574 16 IAD−17 575 5 ILN −14 576 3 SGF −14 573 3 DDC −14 574 1 TOP −16 572 8 DNR −17 573 7 GJT −12 582 11 REV −11 584 17 OAK −17 567 5 OKX −17 567 5 ALB−17 570 4 BUF −16 572 30 OAX −16 572 17 LBF −15 574 45 SLC −12 578 13 LKN −14 581 3 MFR −16 566 11 DTX −15 561 1 APX−17 563 14 GRB −18 567 20 MPX −17 569 21 ABR −16 571 45 RAP−15 573 42 RIW −14 577 3 BOI −15 574 2 SLE −16 566 16 CAR −21 560 16 INL −16 569 18 BIS −14 567 4 GGW −15 570 2 TFX −16 569 2 OTX −16 567 15 UIL −18 559 15 CWVK −19 569 12 1Y7 −20 561 3 GYX −15 568 10 DVN −19 559 5 CHH −15 573 19 ILX −12 574 2 LMN −9 586 9 ADN −9 584 5 76458 −9 587 13 76526 −7 588 17 76612 −7 589 16 76679 −13 578 13 TXKF −13 582 25 MYNN −7 586 0 MWCR −8 584 23 MKJP −9 586 8 MDSD −9 584 23 TJSJ −6 587 17 MZBZ −4 587 34 MROC −5 584 32 TFFR −4 588 39 TTPP −6 586 8 TNCC −3 588 35 SKSP −4 589 36 SKBQ −7 588 0 SKBG −5 588 −6 589 2 SBBV −8 590 35 PHLI −7 589 22 PHTO 12Z 23 Apr 2019 500 hPa
  • 11. Near-global aqua-planet (NG-Aqua) simulation generated by the System for Atmospheric Modeling (Δ" = 4km) 11 https://vimeo.com/299128849
  • 12. Coarse-grain data to 160 km boxes 12 Training regionTesting region Coarse-graining A B C NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 13. 13 Parameterization as function approximation !(#; %) Yanai, et. al. (1973) 64 inputs + SST, SOLIN 68 outputs
  • 14. Training Approach 1 1. Use finite differences to compute residual tendencies 2. Train neural network : Q2 ⇡ ¯qv(t + 3 h) ¯qv(t) 3 h gLS(t), gLS(t) = ¯v · r¯qv q, s, SHF, LHF, TOA Q1, Q2 Neural Network (1 layer of 256 nodes ≅ 70,000 parameters)
  • 15. Neural networks can diagnose Q1 and Q2 NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 15 Neural Network ~ 100,000 parameters Millions of samples Heating (K/day) (finite diff.) !" ≈ .50 Similar to Krasnopolsky et. al. (2013)
  • 16. But its coupled! NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 1 6 Neural Network Dry Dynamics
  • 17. Test with single column model 1 7 Neural Network Single column model
  • 18. Single Column Dynamics x = [qv, s] y = [SHF,LHF, TOASW,#] dx dt = f(x, y(t)) + gLS(t) Prognostic variables Auxiliary variables
  • 19. Uh oh…temperature = 1035 K after 1 day Time (d) p (hPa)
  • 20. Is fitting Q1 and Q2 the right approach? Assumes that model dynamics are continuous in time • But they are not (Donahue and Caldwell, 2018) Assumes moist physics tendencies are available and accurate • Not true for DYAMOND outputs • Not true for observations Does not ensure good predictions over many time steps
  • 21. Fitting the approximate Q1 and Q2 is equivalent to minimizing one-step error 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 50 100 150 200 Error Truth Prediction Hours
  • 22. …but that does not ensure longer term performance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 50 100 150 200 Error Truth Prediction Hours
  • 23. Stable and accurate single column model simulations NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 23 Community Atmosphere Model Version 5 (CAM5) Single Column Mode (default physics, no chemistry) Humidity Anomaly (from true zonal mean) (g/kg) days Brenowitz and Bretherton (2018)
  • 24. Will it work in a GCM? NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 2 4 Neural Network Dry Dynamical Core Brenowitz and Bretherton (2019)
  • 25. Coupled simulations with this model blow-up! 25 • 160 km resolution • System for Atmos. Modeling (SAM) • Fortran calling python 0 5 10 15 20 x (1000 km ) 0.0 2.5 5.0 7.5 10.0 y(1000km) 0 15 30 45 60 50 75 100125 NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 26. The neural network finds spurious correlations! NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 26 Humidity at 200 mb and precipitation
  • 27. Synchronization is hard for machine learning NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 27 Pendulums Synchronize People clapping Distinct sub-systems (clappers, pendulums) are perfectly correlated Timme, Max Planck Institute for Dynamics and Self-organization Domain Knowledge Domain knowledge
  • 28. Ignoring upper atmospheric humidity stabilizes coupled simulation NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 28 Precipitable water after 5 days Brenowitz and Bretherton, 2019
  • 29. Improved coupled forecast accuracy (RMSE of humidity) NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 30. Longer-term drifts in climate 30 NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 31. Biases in circulation 31 Zonal+time mean over days 105-110
  • 32. Peering into The Black Box 32
  • 33. Lower Tropospheric Stability (LTS) • T(600 mb) – T(surface) • Strength of inversion Mid tropospheric humidity • ∫"## $% &' ()/+ • Strongly controls amount of precipitation Systematically Vary Inputs NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 33
  • 34. 34 Insert conditionally averaged input variables into the neural network NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 35. Increasing LTS increases the depth of convection NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 35
  • 36. Increasing moisture strengthens convection NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 36
  • 37. 37 Linearize the Neural Network NOAH D. BRENOWITZ - NOAHB@VULCAN.COM
  • 38. Linearized Response Function 38 NOAH D. BRENOWITZ - NOAHB@VULCAN.COM !(#$, #&) !((, )) Similar to Kuang (2018) Sensitivity of SGS moistening at 600 mb to 1 g/kg of additional moisture at 750 mb.
  • 39. Linearized Response Function 39 NOAH D. BRENOWITZ - NOAHB@VULCAN.COM !(#$, #&) !((, )) Similar to Kuang (2018)
  • 40. The neural network finds spurious correlations! NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 40 Humidity at 200 mb and precipitation
  • 41. Couple Linearized Response Functions to Gravity Waves !′# + ̅!&'( = * + , -./ -! !((1) + -./ -3 3( 1 41 5 3′# + 63&'′ = * + , -.7 -! !((1) + -.7 -3 3( 1 41 5 '# ( = − - -9 7 :;/<( − 4'( :'′ = = =& / >? = =& @+'′ and <( = A B( ̅B NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 41Similar to Kuang (2018)
  • 42. Eigenmodes of this Linear System NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 42 With upper atmospheric input (unstable in GCM) Without upper atmospheric input (stable in GCM) Phase speed (m/s) Phase speed (m/s) Growthrate(1/day) Wavenumber (1/km) Wavenumber (1/km)
  • 43. A scary eigenmode (w/ unstable NN) NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 43
  • 44. A moisture-mode-like standing instability (w/ stable NN) NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 44
  • 45. Conclusions and Future Directions • Coupling with GCM makes ML parameterization hard • Synchronization due to time-scale separation pollutes our training data • Ignoring synchronized inputs stabilizes spatially extended simulations • Accurate for ~2 days for precipitation, ~5 days for humidity and temperature • Longer term drifts in the climate • The NN is physically plausible: • Increase humidity controls the strength of the predicted precipitation • Increasing tropospheric stability controls the height of the predictions • Linearized Response Functions can be coupled to waves • Plot wave-speed/growth rate curves and wave structures. NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 45
  • 46. References Brenowitz, N. D., & Bretherton, C. S. Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-graining. JAMES (2019). Brenowitz, N. D. & Bretherton, C. S. Prognostic Validation of a Neural Network Unified Physics Parameterization. Geophys. Res. Lett. 17, 2493 (2018). S. Rasp, M. S. Pritchard, P. Gentine, Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. U. S. A. 115, 9684–9689 (2018). NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 46
  • 47. ©2018 Vulcan Inc. All rights reserved. The information herein is for informational purposes only and represents the current view of Vulcan Inc. as of the date of this presentation. VULCAN INC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 47
  • 48. Conditionally Averaged-data (|Lat| < 23 deg) NOAH D. BRENOWITZ - NOAHB@VULCAN.COM 48 Total Population Precipitation – Evaporation Net heating