Chapter2 biochemistry


Published on

Published in: Health & Medicine
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Salts dissolve in water in blood and are significant in many reactions. Na and K essential for nerve action; Fe in hemoglobin.
  • Cholesterol important in cell membranes, exists in large quantities in the brain, is the base for the formation of sex hormones. Is made naturally by the body, but is also ingested as we eat meat.
  • Chapter2 biochemistry

    1. 1. Biochemistry Chemistry Comes to Life
    2. 2. Energy Types: How do these relate to living systems? <ul><li>Chemical energy </li></ul><ul><li>Electrical energy </li></ul><ul><li>Mechanical energy </li></ul><ul><li>Radiant energy </li></ul><ul><li>How do these relate to the ideas of potential and kinetic energy? </li></ul>
    3. 3. Chemical bonds <ul><li>Ionic </li></ul><ul><li>Covalent </li></ul><ul><li>Hydrogen bonds </li></ul>
    4. 4. Ionic bonds <ul><li>Involve electron transfer from one atom to another. </li></ul><ul><li>Common in salts, electrolytes </li></ul><ul><li>Ions are necessary for many body functions </li></ul>
    5. 5. Covalent Bonds <ul><li>Shared electrons </li></ul><ul><li>Stable compounds </li></ul><ul><li>Polar covalent bonds in water have biochemical significance </li></ul>
    6. 6. Hydrogen Bonds <ul><li>Weak bonds </li></ul><ul><li>Involved in water tension </li></ul><ul><li>Create intramolecular bonds which bind parts of the same molecule together </li></ul><ul><li>Significant in the shape </li></ul><ul><li>of proteins, DNA, </li></ul><ul><li>and enzyme function </li></ul>
    7. 7. Patterns of Chemical Reactions <ul><li>Synthesis Reaction </li></ul><ul><li>Examples: amino acids joined to make proteins, simple sugars joined on to polysaccharides. </li></ul>Protein Synthesis link
    8. 8. Patterns of Chemical Reactions <ul><li>Decomposition reactions </li></ul><ul><li>Example: glycogen broken down to glucose molecules </li></ul>
    9. 9. Patterns of Chemical Reactions <ul><li>Exchange or displacement reactions </li></ul><ul><li>Example: Hemoglobin picks up Oxygen and unloads Carbon Dioxide. </li></ul>
    10. 10. Significant inorganic molecules <ul><li>Water </li></ul><ul><li>Salts </li></ul><ul><li>Acids and Bases </li></ul>
    11. 11. Biological significance of water <ul><li>High Heat Capacity </li></ul><ul><ul><li>Prevents sudden changes in body temp. </li></ul></ul><ul><li>Polarity and Solvent Properties </li></ul><ul><ul><li>Salts, O 2 , CO 2, dissolved in blood; lubricant molecules </li></ul></ul><ul><li>Chemical Reactivity </li></ul><ul><ul><li>Reactant in digestion; hydrolysis </li></ul></ul><ul><li>Cushioning properties </li></ul><ul><ul><li>CSF, amniotic fluid </li></ul></ul>
    12. 12. Polarity and Solvent Properties
    13. 13. Organic Macromolecules <ul><li>Carbohydrates </li></ul><ul><li>Lipids </li></ul><ul><li>Proteins </li></ul><ul><li>Nucleic Acids </li></ul><ul><li>ATP </li></ul>
    14. 14. Biological Macromolecules
    15. 15. Carbohydrates <ul><li>C, H, O </li></ul><ul><li>H:O::2:1 </li></ul><ul><li>3 Types </li></ul><ul><ul><li>Monosaccharide </li></ul></ul><ul><ul><li>Disaccharides </li></ul></ul><ul><ul><li>Polysaccharides </li></ul></ul><ul><ul><ul><li>Starches in plants </li></ul></ul></ul><ul><ul><ul><li>Glycogen in animals </li></ul></ul></ul>
    16. 16. Lipids <ul><li>Lipids are hydrophobic –”water fearing” </li></ul><ul><li>Do NOT mix with water </li></ul><ul><li>Includes fats, waxes, steroids, & oils </li></ul><ul><li>Function </li></ul><ul><li>Fats store energy, help to insulate the body, and cushion and protect organs </li></ul>
    17. 17. Lipids:Triglycerides <ul><li>Triglycerides (neutral fats): Glycerol + 3 fatty acid chains </li></ul><ul><ul><li>Saturated: in animals, solid at room T, called fats </li></ul></ul><ul><ul><li>Unsaturated: in plants, liquid at room T, called oils </li></ul></ul><ul><ul><li>Transfats: man-made unsaturated, solid fat. </li></ul></ul>
    18. 18. Lipids: Phospholipids Cell Membrane up close and personal
    19. 19. Lipids: steroids <ul><li>Flat, four-ring shape </li></ul><ul><li>From cholesterol and sex hormones. </li></ul>
    20. 20. Proteins <ul><li>Proteins are polymers made of monomers called amino acids </li></ul><ul><li>All proteins are made of 20 different amino acids linked in different orders </li></ul><ul><li>Proteins are used to build cells, act as hormones & enzymes, and do much of the work in a cell </li></ul>
    21. 21. Proteins <ul><li>C,H,O,N and sometimes S </li></ul><ul><li>Made up of chains of amino acids </li></ul><ul><li>Structural proteins: muscle, keratin, collagen; make up 50% of organic matter </li></ul><ul><li>Functional proteins </li></ul><ul><ul><li>Antibodies </li></ul></ul><ul><ul><li>Hormones </li></ul></ul><ul><ul><li>Transport protein: hemoglobin </li></ul></ul><ul><ul><li>Enzymes: biological catalysts </li></ul></ul><ul><ul><li> </li></ul></ul>
    22. 22. Nucleic Acids <ul><li>Store hereditary information </li></ul><ul><li>Contain information for making all the body’s proteins </li></ul><ul><li>Two types exist --- DNA & RNA </li></ul>
    23. 23. <ul><li>Nucleic Acids: </li></ul><ul><li>DNA: D eoxyribonucleic A cid </li></ul><ul><li>Double Helix </li></ul><ul><li>is the nucleic acid whose nucleotide sequence stores the genetic code for its own replication and for the sequence of amino acids in proteins.   </li></ul><ul><li>RNA: R ibonucleic A cid </li></ul><ul><li>Single Strand </li></ul><ul><li>is a single-stranded nucleic acid that translates the genetic code of DNA into the amino acid sequence of proteins. </li></ul>
    24. 24. Macromolecules
    25. 25. Macromolecules
    26. 26. ATP <ul><li>Adenosine Triphosphate </li></ul><ul><li>ATP-energy molecule formed from breakdown of glucose. </li></ul>
    27. 27. ATP <ul><li>1. ATP ( adenosine triphosphate ) is a nucleotide of adenosine composed of ribose and adenine. </li></ul><ul><li>2. Derives its name from three phosphates attached to the five-carbon portion of the molecule. </li></ul><ul><li>3. ATP is a high-energy molecule because the last two unstable phosphate bonds are easily broken. </li></ul><ul><li>4. Usually in cells, a terminal phosphate bond is hydrolyzed , leaving ADP (adenosine diphosphate ). </li></ul><ul><li>5. ATP is used in cells to supply energy for energy-requiring processes (e.g., synthetic reactions); whenever a cell carries out an activity or builds molecules, it &quot;spends&quot; ATP.   </li></ul>