Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

The Paleoecology of Holme Moss Human interference influences on habitat change

174 views

Published on

  • Be the first to comment

  • Be the first to like this

The Paleoecology of Holme Moss Human interference influences on habitat change

  1. 1. The Paleoecology of Holme Moss: Human interference influences on habitat change Introduction Holme Moss isa highaltitude uplandmoorlocatedwithinthe DarkPeakSSSIsite of the Southern Penninescomprisedof amixedpatchworkof habitatsincluding blanketbogs,heathlandandmires. The predominantvegetationare grasses(WavyHair-grass-Deschampsia flexuosa),shrubs(Heather- Calluna vulgaris, Bilberry -Vacciniummyrtillus,) andsedges(CottonGrass Eriophorumvaginatum), withsmall areasof SphagnumMoss(JNCC2004). Thisarea once containedwoodlandandremnant patchesof Oak Woodscan be foundon the moorsslopes(Natural England,1994).The areahas experiencedsignificanthabitatchangesthroughoutthe years(Holden etal., 2007) withmany studiesfocusingondegradationof peatlandsandcausesof erosionthroughoutthe moors(Evans, 2005; Shepard et al., 2013). By utilisingpaleoecology,withafocusonpollenmacrofossil distributioninpeatcores,thisstudy aimsto investigate the habitat changesovertime withinHolme Moss.The followingkeyquestions will be addressed,whatare the impactsof humaninterference withinthisarea?Are there any significantpointsinhistorywhichdetrimentallyimpacteduponHolme Moss?Andare there any factors influencingcurrenthabitatcompositions? Objectives The investigationaimandkeyquestionsshallbe addressedthe following:  Core samplesshall be gatheredacrossthe varyinghabitatof Holme Moss  Metal concentrationat periodicintervalsincore depthwill be analysed.  Pollenandanthropogenicindicatorscountedatperiodicintervalsincore depth.  Resultswill be statisticallyanalysedandillustratedtoidentifychangesinpollen concentrationsovertime incorrelationwithchangesinmetal concentration. Method Coreswere obtainedasbelow(figure 1). Core name Date taken Size Location Site characteristics Analysis performed CorePlat Nov-15 50cm Plateau Full vegitationcover,Eriophorum dominent Peat Chemistry CoreT1 Nov-15 50cm Original Surface Full vegitationcover,Deschampsiaflexuosa dominent Peat Chemistry Core2013 Jul-13 100cm Original Surface Full vegitationcover,Deschampsiaflexuosa dominent Pollen Analysis Figure 1. Core samples by site and analysis performed Pollensample preparationforanalysiswere obtainedfollowingprotocolsoutlinedbyLageard(2009) whichutilisedcentrifugal separationtechniquesdescribedbyChambers(2002),Faegri & Iversen (1989), Moore (1986) and Moore et al., (1991). Pollenidentification,Total LandPollen(TLP) calculationsandpollendiagramwere producedfollowingprotocolsoutlinedbyTallis(1999) and Walker(2005). The above wasappliedtoCore2013.
  2. 2. PeatchemistrycompositiondatawasobtainedviaICPanalysis.SamplepreparationwithEDTA for ICPanalysisfollowedprotocolsoutlinedbyOztan &During2012 for CorePlatandCoreT1.The soil freshto dryweightratiowasalso calculatedviarecordingthe freshandre-weighingafteraperiodof drying. Results Freshand dry weightµg pergram was calculatedusingthe followingforLead(Pb),Copper(Cu), Potassium(K) andMagnesium(Mg).ICPconcentrationswere giveninmicrogramsperlitre (mg/litre) for eachelement.Thiswasconvertedintomicrogramspermillilitre (µg/ml) andtimesbythe 30 mL of extractingfluid(EDTA).Thiswasthendividedbythe soilsfreshweight(5g) todetermine microgramsof elementpergramof freshweight(i.eµgPb/gFW).Dry weightmicrogrampergram (µg/gDW) for eachelementwascalculatedbymultiplyingmicrogramspergramof freshweightper element,bythe freshtodryweightratioof core soil sample.Anexample of thisprocessseenbelow for Lead: 7.02 mg Pb/l = 7.02 µg Pb/ml 7.02 µg Pb/ml x 30 = 210.5 µg Pb 210.5 µg Pb ÷ 5 = 42.1 µg Pb/gFW 42.1 µg Pb/g FW = 42.1 x 3.85 = 162.08 µg Pb / g DW Thisprocesswas repeatedwitheachelementandvaryingdepthsthroughoutbothCorePlatand CoreT1. Figure 2. CorePlat fresh and dry weight concentrations ofLead across a range ofdepths withi n 0-50 cm All elementsdemonstrate variationbetweenfreshanddryweightconcentrations,withfreshweight levelslowerthandryweightinbothCorePlatandCoreT1.Pb concentrationsinCorePlatindicate an increase inPbfromapproximately25cminfresh weight,and30cm indry weight(figure2).Followed by a periodof fluctuationinconcentrationinbothfreshanddryweightfrombetween10-2cm. Furthermore,proceededbyasteepdeclineinconcentration.A similartrendisobservedinCoreT1 0 5 10 15 20 25 30 35 40 45 50 0 100 200 300 400 500 Depth(cm) Pb (µg/g) Pb freshand dry weightconcentration across 0-50cm depth of peatCorePlat Fresh Weight Dry Weight
  3. 3. (figure 3) yetnotable featuresdistinguishitfromCorePlat.DryweightPbconcentrationsincura steepincrease between50-40cm whichreducesinseverity(yetcontinuestoincrease) until 20cm. Proceededbyasteepdecline tobelow concentrationlevelsseeninfresh weight.Furthermore proceededbyanincrease,fluctuation,thandecline similartothatof CorePlat.Comparatively, CorePlatdemonstrateshigherconcentrationsof Pb,whilstCoreT1experiencesnotablymore erratic fluctuations. Figure 3. CoreT1 fresh and dry weight concentrations ofLead across a range ofdepths within 0-50 cm Cu inboth CorePlat(figure4) andCoreT1 (figure 5) follow asimilarpatterntothose observedinPb inCoreT1. Cu increasesat50cm followedbysuddendecline tolevelsbelow or similartofresh weightconcentrations,precededbyaperiodof fluctuation;resolvingwithasteepdecline.CorePlat containshigherconcentrationsof Cu.CorePlatalsodemonstratesalowerdegreeof variation betweenfreshanddryweightconcentrations of Cu. 0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300 350 Depth(cm) Pb (µg/g) Pb freshand dry weightconcentrations across 0-50cm depth of peat CoreT1 Fresh Weight Dry Weight
  4. 4. Figure 4. CorePlat fresh and dry weight concentrations ofCopper across a range ofdepths within 0 -50 cm Figure 5. CoreT1 fresh and dry weight concentrations ofCopper across a range ofdepths within 0 -50 cm 0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 Depth(cm) Cu (µg/g) Cu freshand dry weightconcentration across 0-50cm of peat CorePlat Fresh Weight Dry Weight 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 Depth(cm) Cu (µg/g) Cu freshand dry weightconcentration across 0-50cm of peat CoreT1 Fresh Weight Dry Weight
  5. 5. K concentrationsinCorePlatdemonstrate asubstantial difference betweenfreshanddryweight (figure 6).Freshweightconcentrationsneverpeakbeyond100µg/g whereasdryweightstartsat over350 µg/g andpeaksat over600 µg/g. The freshand dryweightshowsadecline inKfrom50 – 30cm followedbyanincrease.The increase issteeperindryweightandconcludesat20cm. Aswith Pb andCu, a periodof fluctuationinconcentrationfrom10cmis precededbyadecline from3-0cm. CorePlat,Kconcentrationsexperienceasharpspike inabundance inbothfreshand dryweightat around6cm indepth. Figure 6. CorePlat fresh and dry weight concentrations ofPotassium across a range ofdepths within 0 -50 cm Figure 7. CoreT1 fresh and dry weight concentrations ofPotassium across a range ofdepths within 0- 50 cm 0 5 10 15 20 25 30 35 40 45 50 0 100 200 300 400 500 600 700 Depth(cm) K (µg/g) K fresh and dry weightconcentration across 0-50cm of peatCorePlat Fresh Weight Dry Weight 0 5 10 15 20 25 30 35 40 45 50 0 100 200 300 400 500 600 Depth(cm) K (µg/g) K fresh and dry weightconcentration across 0-50cm of peatCoreT1 fresh Weight Dry Weight
  6. 6. CoreT1 K concentrationsdemonstrate substantial differencesbetweenfreshanddryweight(figure 7). It too followsasimilarpatterntothatseeninCorePlat,withafew distinguishingfeatures.The decline indryweightKfrom20cm dropsbelow freshweightlevels.The same sharpspike (observed inCorePlat) occursnowat 4cm. K concentrationscontinue toincrease withoutdecline until0cm. Figure 8. CorePlat fresh and dry weight concentrations ofMagnesium across a range ofdepths within 0-50 cm Figure 9. CoreT1 fresh and dry weight concentrations ofMagnesium across a range ofdepths within 0 - 50 cm 0 5 10 15 20 25 30 35 40 45 50 0 200 400 600 800 1000 Depth(cm) Mg (µg/g) Mg freshand dry weightconcentration across 0-50cm of peat CorePlat fresh Weight Dry Weight 0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300 350 Depth(cm) Mg (µg/g) Mg freshand dry weightconcentration across 0-50cm of peat coreT1 Fresh Weight Dry Weight
  7. 7. Mg concentrationsinCorePlatappeartofollow similartrendsobservedinKconcentrationsin CorePlat(figure 8).However,Mg levelsare substantiallyhigherwithasteeperdecline from20cm. CoreT1 Mg concentrations,are similartopatternsobservedinKconcentrationsinCoreT1(figure 9). CorePlat Descriptives CoreT1 Descriptives Element Statistic Std. Error Statistic Std. Error Pb DW (µg/g) Mean 199.57 ± 129.43 32.36 143.83 ± 117.79 29.45 Sig. 0.348 0.031 Cu DW (µg/g) Mean 9.14 ± 2.83 6.83 ± 5.50 1.38 Sig. 0.002 0.058 K DW (µg/g) Mean 288.87 ± 123.43 30.86 236.2 ± 150.67 37.67 Sig. 0.023 0.302 Mg DW (µg/g) Mean 303.49 ± 213.16 53.29 174.18 ± 95.87 23.97 Sig. 0.006 0.019 Figure 10. Mean concentration per elementpercore. Sig =normalitysignificance(Shapiro-Wilks). ±Standard deviation produced with N= 16 Statistical analysisperformedon dryweightelementconcentrationsconcludedthatcomparatively CorePlatcontainedhighlevelsof all elementsthanCoreT1(figure 10).Standarderror and deviation was highandnormalitytests(Shapiro-Wilks) identifiedthe dataasnon-parametric.Consequently, Spearman’srankcorrelationswere performedacrossall dryweightelementconcentrationsbetween bothcores (figure 11) and dry weightconcentrationsinrelationtodepthforbothcores(figure 12).A numberof strong significantcorrelationscanbe seeninfigure 11 and figure 12.
  8. 8. CorePlat & CoreT1 Element Correlation Matrix PLAT Pb/ DW (µg/g) PLAT Cu/ DW (µg/g) PLAT K/ DW (µg/g) PLAT Mg/ DW (µg/g) T1 Pb/ DW (µg/g) T1 Cu/ DW (µg/g) T1 K/ DW (µg/g) T1 Mg/ DW (µg/g) PLAT Pb/ DW (µg/g) Correlation Coefficient 1.000 .882** -.050 -.571* .774** .679** -.076 -.165 PLAT Cu/ DW (µg/g) Correlation Coefficient .882** 1.000 -.209 -.756** .756** .694** .135 .044 PLAT K/ DW (µg/g) Correlation Coefficient -.050 -.209 1.000 .703** .056 -.026 -.068 -.162 PLAT Mg/ DW (µg/g) Correlation Coefficient -.571* -.756** .703** 1.000 -.550* -.588* -.103 -.159 T1 Pb/ DW (µg/g) Correlation Coefficient .774** .756** .056 -.550* 1.000 .971** .250 .253 T1 Cu/ DW (µg/g) Correlation Coefficient .679** .694** -.026 -.588* .971** 1.000 .329 .362 T1 K/ DW (µg/g) Correlation Coefficient -.076 .135 -.068 -.103 .250 .329 1.000 .932** T1 Mg/ DW (µg/g) Correlation Coefficient -.165 .044 -.162 -.159 .253 .362 .932** 1.000 **. Correlation is significant at the 0.01 level. *. Correlation is significant at the 0.05 level. Figure 11. Spearman’s rank correlation coefficients between CorePlat (PLAT) elements dry weight concentrations and CoreT1 (T1 ) elements dry weight concentrations CorePlat Depth vs Element Correlations CoreT1 Depth vs Element Correlations Pb DW (µg/g) Cu DW (µg/g) K DW (µg/g) Mg DW (µg/g) Pb DW (µg/g) Cu DW (µg/g) K DW (µg/g) Mg DW (µg/g) Depth Correlation Coefficient -.756** -.903** .450 .891** -.644** -.594* -.129 -.085 **. Correlation is significant at the 0.01 level. *. Correlation is significant at the 0.05 level. Figure 12. Spearman’s rank correlation coefficient between all elements and depth per core. Total LandPollen(TLP) (the sumof all tree,shrubandherbsspecies counted) wascalculated throughouta numberof depthwithin0-50cm of Core2013. The percentage TLPper specieswasthen calculated(%TLP) toproduce a pollendiagramforHolme Moss(figure 13).Two pollenassemblage zoneshave beenidentified,HM-dandHM-c. ThisincombinationwithSCPconcentrations,arboreal /non-arboreal abundanceandcharcoal points,have beenusedtodistinguishanykeypoints throughoutthe core whichcan be attributedtoclimacticchange,disturbance andanthropogenic influence.
  9. 9. Figure 13 . HolmeMoss pollendiagram. Pollenabundancethroughout 0-50cm withofpeat core“Core2013”.Identified andCreated November2015.
  10. 10. Discussion Pollencompositionat30cm withinHM-c demonstrate anabundance of Pinus andCorylus which reflectsanarboreal woodlandhabitat.Atthe same point,SCP’sandcharcoal experienceda significantincreaseindicatingaperiodof deforestationandburning.Thisissupportedbydeclining abundance of arboreal pollenfollowedbyasteadyincrease (20cm) innon-arboreals. Sphagnum and heather(Calluna) experience asignificantincrease inabundance withinHm-d.However,Sphagnum thendeclinesthroughoutthe sootyHM-dlayer(indicationof the industrial age).Shallow pollen assemblagesreflectedmoderndayvegetationcompositionwithalmostdiminishedspore abundance,asteadyincrease inarboreal species(withthe absence of Pinus) andheather dominance. Peatchemistry analysisat30 cm supportsthe findingswithinpollenassemblages.At30 -20cm bothLead andCopperexperience andincrease inconcentration.The heavymetalsincrease couldbe attributedtoatmosphericdepositsfromindustrialisationandmining(Turner, etal2014). Both Leadand Copperhave a significantnegative correlationwithdepth,furthersupportingits abundance as depthreduces.PotassiumandMagnesiumfrom30-20cm bothdemonstrate an increase whichreflectspollenassemblagesindicatingadecline invegetationuptakefollowing deforestationandlandclearing(Vane etal., 2013). Bothmetalshave significantlypositive correlationswithone anotherineachcore indicatingasLeadincreasessotoo doesCopper.Though, MagnesiumandPotassiumhave significantnegative correlationswithmetalsindicatingasheavy metalsincrease,mineralssuchasPotassiumandMagnesiumdecline.The fluctuationof bothheavy metalsandmineralsfrom16-0cm couldindicate a periodof revegetationfrompossiblerestoration efforts. ComparativelyCorePlatshowsevidenceof beinganincomplete core asCoreT1 showsvariationin pointsof change.CoreT1 appearsto show greaterdetail atdepthsbetween10-0cm.Thiscould indicate lossof depthwithinCorePlatdue topeatcutting(Battarbee etal.,2015). The variationin elementabundancebetweenwetanddryweightcanbe attributedtoflux withingroundwater. Heavymetal concentrationsare lessmobileingroundwaterwhereasmineralsare ina constantstate of flux dependentonvegetationanduptake fromrootcommunities(Alongi etal., 2004). Overall,thisinvestigationidentifiestwopointsof interestwithinthe coressampledwhich demonstrate substantial anddetrimental interference fromdeforestation,burningandmining(30 - 20cm), precededbyatmosphericcontaminationfromthe industrial age (20-16cm). These points have causedsignificantchangesinvegetationcompositionbothhistoricallyandcurrent,converting the landscape froman arboreal woodlandhabitattopeatbogsand heathland. Radiocarbondatingcouldimprove thisstudybyprovidingatimeline forcomparison.Other investigationshave producedsimilarfindingstothisstudy,highlightingsignificantdisruptiontoboth peatchemistryandpollenassemblagesatdepthsof approximately30-20cmas a resultof the industrial age,supportedbyradiocarbondating(Battarbee etal, 2015; Lageard et al,1999). Improvementinthe processingof pollenandSCPidentificationisneeded,asanumberof individuals performedthistaskresultinginpotentialmisidentificationbetweenresearchers.Furthermore, significantimprovementscanbe made by simplyincreasingthe sample sizewithinthe coresand repeatingtestingtoconfirmitsvalidity.
  11. 11. Word count 1642 Reference Alongi,D.,Wattayakorn,G.,Boyle,S.,Tirendi,F.,Payn,C.,Dixon,P. (2004).Influence of rootand climate onmineral andtrace elementstorage andflux intropical mangrove soils. Biogeochemistry, Vol 69: 105-123 Battarbee,R.,Turner,S.,Yang, H., Rose,N.,Smyntek,P.,Reimer,P.,Oldffield,F.,Jones,V.,Flower, R., Roe,K.,Shilland,E.,Blaauw,M.(2015). Airpollutantcontaminationandacidificationof surface watersinthe NorthYork Moors, UK: Multi-proxyevidence fromthe sedimentsof amoorlandpool. The Holocene,Vol 25: 266-237 Chambers,F.(2002). The Environmental applicationsof pollenanalysis.In:S,Haslett. Quaternary environmentalmicropalaeontology. Arnold,London,pp241-258 Evans,R. (2005). Curtailinggrazing-inducederosioninasmall catchmentanditsenvirons,the Peak District,central England. Applied Geography, Vol 25:81-95 Faegri,Kand Iversen,J.(1989). Textbookof pollen analysis. 4th ed.Wiley,Chichester Holden,J.,Shotbolt,L.,Bonn,A.,Burt,T., Chapman,P.,Dougill,A.,Fraser,E.,Hubacek,K.,Irvine,B., Kirkby,M.,Reed,M., Prell,C.,Stagl,S.,Stringer,L.,Turner,A.,Worrall,F.(2007). Environmental change in moorlandlandscapes. Earthsciencereviews,Vol 82: 75-100 JNCC.(2004). UK SACdataform. Peterborough,Natura2000. UK90007021 Lageard,J. (2009). COSHHRISK ASSESSMENT Preparation of samplesforpollen analysis. Manchester metropolitanuniversity,Manchester. Lageard,J., Chambers,F.,Thomas,P.(1999). Climaticsignificance of the marginalizationof Scots pine (Pinussylvestris L.) c. 2500 bc at White Moss,SouthCheshire,UK. TheHolocene, Vol 9: 321-331 Moore,P. (1986). Site history.In:P,Moore & S, Chapman, Methodsin plantecology. 2nd Ed. Blackwells,Oxford. Moore,P., Webb,J.,Collinson,M.(1991). Pollen analysis.2n ed.Blackwell,Oxford Natural England.(1994) Designatesites view:South Penninemoors. [Online] [Accesson03/12/2015] <http://www.sssi.naturalengland.org.uk/citation/citation_photo/1007196.pdf> Oztan,S., During,R.(2012). Microwave assistedEDTA extraction-determinationof pseudototal contentsof distinctelementsinsolidenvironmental matrices. Talanta,Vol99:594-602 Shepherd,M.,Labadz,J.,Caporn,S., Crowle,A.,Goodison,R.,Rebane,M.,Waters,R. (2013). Natural Englandreviewof uplandevidence- Restoration of degraded blanketbog.Natural EnglandEvidence Review,Number003 Tallis,J.(1999). The uplands:humaninfluence onplantcover.In:E,Greenwood(Ed) Ecology & landscapedevelopment:a history of theMersey Basin, pp109-121, Liverpool universitypress.
  12. 12. Turner,T., Swindles,G.,Roucoux,K.(2014). Late Holocene ecohydrological andcarbondynamicsof a UK raisedbog: impactof human activityandclimate change. Quaternary sciencereviews,Vol 84:65- 85 Vane,C.,Rawlins,B.,Kim,A.,Moss-haye,V.,Kendrick,C.,Leng,M.(2013). Sedimentarytransportand fate of polycyclicaromatichydrocarbons(PAH) frommanagedburningof moorlandvegetationon blanketpeat,SotuhYorkshire,UK. Scienceof the total environment, Vol 449: 81-94 Walker,M. (2005). Quaternary dating methods. Wiley,Chichester

×