Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Driving ROI with Technical SEO

678 views

Published on

A breakdown of structure, speed and semantics and how you can optimise these areas to drive ROI.

Published in: Data & Analytics
  • Be the first to comment

Driving ROI with Technical SEO

  1. 1. DRIVING ROI WITH TECHNICAL SEO
  2. 2. @NicholaSto+
  3. 3. @NicholaSto+ STRUCTURE
  4. 4. @NicholaSto+ STRUCTURE Speed
  5. 5. @NicholaSto+ STRUCTURE Semantics
  6. 6. STRUCTURE FOR CRAWL AND INDEX PERFORMANCE @NicholaSto+
  7. 7. The more useful content indexed, the more visitors we can attract, the greater the opportunity to convert. @NicholaSto+
  8. 8. @NicholaSto+ NOT ALL URLS ARE EQUAL Assess which URLs should or should not be indexed Advise logic for crawl, index, block, handle Mark-up for paginated and similar content
  9. 9. @NicholaSto+ Indexed URLs should match the (unique) product inventory
  10. 10. @NicholaSto+ TOPSHOP.COM 60,000
  11. 11. @NicholaSto+ ALLSAINTS.COM 8,600
  12. 12. @NicholaSto+ FRENCH CONNECTION.COM 41,000
  13. 13. @NicholaSto+ WHISTLES.CO.UK 518
  14. 14. @NicholaSto+ WHISTLES.COM 27,000
  15. 15. @NicholaSto+ JOSEPH- FASHION.COM 4,400
  16. 16. @NicholaSto+ JOSEPH.CO.UK 93
  17. 17. “This represents the number of simultaneous parallel connections Googlebot may use to crawl the site, as well as the time it has to wait between the fetches. “ @NicholaSto+ CRAWL RATE LIMIT -Gary Illyes - Google
  18. 18. “If there’s no demand from indexing, there will be low activity from Googlebot“ @NicholaSto+ CRAWL DEMAND -Gary Illyes - Google
  19. 19. @NicholaSto+ GENERAL JUNK HACKED URLS PARAMETERS SOFT ERRORS BAD CONTENT
  20. 20. @NicholaSto+ MANAGING ROBOTS
  21. 21. @NicholaSto+ ROBOTS.TXT Where robot agents can or cannot go Location of XML sitemaps Doesn’t prevent indexing
  22. 22. @NicholaSto+ X-ROBOTS HEADER OR META TAGBlock from index, manage filters URL must be “allowed” to be obeyed Not about crawling
  23. 23. @NicholaSto+ SEARCH CONSOLE/BWT Block from index Handle parameters Test robots.txt
  24. 24. IMPACT METRICS @NicholaSto+
  25. 25. @NicholaSto+ # RANKING KEYWORDS
  26. 26. No of indexed kw @NicholaSto+ # LANDING PAGES
  27. 27. @NicholaSto+ CRITICAL METRICS
  28. 28. @NicholaSto+ CONVERSION PERFORMANCE
  29. 29. @NicholaSto+ STRUCTURE
  30. 30. @NicholaSto+ STRUCTURE Speed
  31. 31. FAST IS THE ONLY SPEED @NicholaSto+
  32. 32. ABANDONMENT RATE Page Load 3G 19 Seconds Average Load Time >3 Seconds 53% Abandonment Rate Source: Google /DoubleClick @NicholaSto+
  33. 33. HTTP/2 reduce latency minimise protocol overhead request prioritisation @NicholaSto+
  34. 34. HTTP/1.1 HTTP/2 Head of line – resources Parallelised resources Priority queue – ‘educated’ guess Priori?sed by type & context Queue held on client Browser to server Keep-alive – stated Keep-alive enabled default
  35. 35. Image Optimisation @NicholaSto+
  36. 36. •  Compress (lossy/lossless) to reduce size •  Avoid images that add nothing to narrative Source: Google •  Consider WebP – 26% smaller @NicholaSto+
  37. 37. YouTube: up to 10% reduction in page load time. Source: Chromium Blog @NicholaSto+
  38. 38. @NicholaSto+ CODE AUDIT JUNK TAGS JAVASCRIPT RENDER BLOCKING
  39. 39. HTTP/ 2 Google Developers PERFORMANCE MODEL
  40. 40. RAIL Guideline Response <100ms Anima?on 10ms/frame Idle •  Use to complete deferred work •  Keep pre-load to minimum Load <1000ms
  41. 41. PAGE SIMPLICITY
  42. 42. THE FUTURE IS BATTERY POWERED
  43. 43. IMPACT METRICS @NicholaSto+
  44. 44. TTFP TTFL @NicholaSto+
  45. 45. @NicholaSto+ Engagement Metrics
  46. 46. @NicholaSto+ CRITICAL METRICS
  47. 47. @NicholaSto+ CONVERSION PERFORMANCE
  48. 48. @NicholaSto+ STRUCTURE
  49. 49. @NicholaSto+ STRUCTURE Speed
  50. 50. @NicholaSto+ STRUCTURE Semantics
  51. 51. of searches in the Google App are by voice Source: Think with Google May 16 @NicholaSto+
  52. 52. “Near me” searches +3,400% since 2011 Source: Google @NicholaSto+
  53. 53. Nail Salon near me… @NicholaSto+
  54. 54. Restaurant nearme… @NicholaSto+
  55. 55. 80%…of those (near me) searches occur on mobile phones. Source: Google @NicholaSto+
  56. 56. High ‘ROPO’ intent @NicholaSto+
  57. 57. RESTAURANTS NEAR ME @NicholaSto+
  58. 58. WHAT’S ON AT THE CINEMA @NicholaSto+
  59. 59. WHERE IS WAITROSE BASINGSTOKE @NicholaSto+
  60. 60. •  I get the answer “in-SERP” •  Location known & inherent in answer •  Entity recognition Source: Google @NicholaSto+
  61. 61. Structured Data @NicholaSto+
  62. 62. @NicholaSto+
  63. 63. DATA PROCESSED DIRECTLY AND INDIRECTLY BY MACHINES Tim Berners-Lee @NicholaSto+
  64. 64. •  JSON-LD •  Microdata •  RDFa Source: Google @NicholaSto+
  65. 65. All the structured data! @NicholaSto+
  66. 66. Schema.org @NicholaSto+
  67. 67. @NicholaSto+
  68. 68. 4.6 star rating Serves 2 Takes 35 minutes @NicholaSto+
  69. 69. IMPACT METRICS @NicholaSto+
  70. 70. @NicholaSto+ CTR IMPROVEMENT
  71. 71. The more useful content indexed, the more visitors we can attract, the greater the opportunity to convert. @NicholaSto+
  72. 72. @NicholaSto+ STRUCTURE
  73. 73. @NicholaSto+ STRUCTURE Speed
  74. 74. @NicholaSto+ STRUCTURE Semantics
  75. 75. @NicholaSto+ STRUCTURE REVENUE GROWTH

×