MPLS Backhaul & Backbone Network Design

8,143 views

Published on

Download a PDF file: http://www.netmanias.com/en/?m=view&id=techdocs&no=5911&vm=ppt
You can also find and download more materials from http://www.netmanias.com

Published in: Technology

MPLS Backhaul & Backbone Network Design

  1. 1. About NMC Consulting Group NMC Consulting Group is an advanced and professional network consulting company, specializing in IP network areas (e.g., FTTH, Metro Ethernet and IP/MPLS), service areas (e.g., IPTV, IMS and CDN), and wireless network areas (e.g., Mobile WiMAX, LTE and Wi-Fi) since 2002. Copyright © 2002-2013NMC Consulting Group. All rights reserved. www.nmcgroups.com Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backhaul & Backbone Network Design December 13, 2007 NMC Consulting Group (tech@netmanias.com) www.netmanias.com www.nmcgroups.com
  2. 2. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 2 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Table of Contents  MPLS Backhaul Network  MPLS Backhaul Concept  Backhaul Connectivity for Residential User  Backhaul Connectivity for Enterprise User  Backhaul Network Resiliency  MPLS Backbone Network  MPLS Backbone Concept  MPLS L3 VPN  MPLS L2 VPN: VPWS  MPLS L2 VPN: VPLS  MPLS Fast Recovery
  3. 3. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 3 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backhaul Network
  4. 4. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 4 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Backhaul Concept  Customer Separation by QinQ and H-VPLS  1 S-VID and 1 VC-LSP per access node for residential user  1 S-VID and 1 VC-LSP per enterprise user  Single backhaul can support  All kinds of access node: xDSL, FTTH, WiBro  Residential TPS service and WiBro service  Enterprise site-to-site VPN service and Internet service  Dual-homing architecture between AS (CO) and ES (POP) for redundancy ES (PE)AS (PE) MPLS Backbone ER H-VPLS Active Spoke LSP Residential xDSL FTTH WiBro TPS Service WiBro Service Enterprise VPN Service Internet Service QinQ POPCO
  5. 5. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 5 Netmanias Technical document: MPLS Backhaul & Backbone Network Design VSI VSI ADSL2+ Voice PVC (1/35) Video PVC (1/36) Internet PVC (1/37) Mgmt PVC (0/34) DSLAM RG/IAD AS (PE) S-VID=DSLAM ID Voice VLAN (3) Video VLAN (4) Internet VLAN (5) C-VID=Service ID OLT PON ONT L2 SWBS ES (PE) BRAS ER QinQ (Per-Access Node VLAN) H-VPLS POP Active Spoke LSP CO MTU-S PE-rs EMS Voice VLAN (3) Video VLAN (4) Internet VLAN (5) VC-LSP=Per DSLAM S-VID=DSLAM ID GE port Tunnel-LSP=PE to PE Voice VLAN (3) Video VLAN (4) Internet VLAN (5) Mgmt VLAN (1000) S-VID=OLT ID/RAS ID Voice VLAN (3) Video VLAN (4) Internet VLAN (5) C-VID=Service ID EMS Voice VLAN (3) Video VLAN (4) Internet VLAN (5) VC-LSP=Per OLT/Per BS S-VID=OLT ID/RAS ID GE port Voice VLAN (3) Video VLAN (4) S-VID=DSLAM ID GE port Voice VLAN (3) Video VLAN (4) S-VID=OLT ID/RAS ID GE port Internet VLAN (5) S-VID=DSLAM ID GE port Internet VLAN (5) S-VID=OLT ID/RAS ID ER BRAS RG/ IAD PON CPE C-VID=Service ID C-VID=Service ID C-VID=Service ID C-VID=Service ID QinQ QinQ VSI VSI VSI VSI VPLS VPLS VC-LSP to VSIS-VID to VSIQ-in-Q Backhaul Connectivity for Residential User
  6. 6. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 6 Netmanias Technical document: MPLS Backhaul & Backbone Network Design VSI VSI VSI VSI ADSL2+ DSLAM CE AS (PE) S-VID=Enterprise ID (VPN-A) OLT L2 SW ES (PE) ER QinQ (Per-Enterprise VLAN) H-VPLS POP Active Spoke LSP CO MTU-S PE-rs VC-LSP=Per Enterprise VPN (VPN-A) S-VID=Enterprise ID (VPN-A) GE port Tunnel-LSP=PE to PE S-VID=Enterprise ID (VPN-A) GE port GE port CPE CE QinQ QinQ VSI S-VID=Enterprise ID (VPN-B) S-VID=Enterprise ID (VPN-B) S-VID=Enterprise ID (VPN-B) CPE VSI VC-LSP=Per Enterprise VPN (VPN-B) S-VID=Enterprise ID (VPN-C) VC-LSP=Per Enterprise VPN (VPN-C) S-VID=Enterprise ID (VPN-C) GE port S-VID=Enterprise ID (VPN-C) CPE VSI S-VID=Enterprise ID (VPN-D) S-VID=Enterprise ID (VPN-D) S-VID=Enterprise ID (VPN-D) CPE VSI VC-LSP=Per Enterprise VPN (VPN-D) ER VPN-A VPN-B VPN-C VPN-D C-VID=Defined by User C-VID=Defined by User VC-LSP to VSIS-VID to VSIQ-in-Q BS Backhaul Connectivity for Enterprise User
  7. 7. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 7 Netmanias Technical document: MPLS Backhaul & Backbone Network Design ERAS BRAS AN ES < Normal > VRRP Master Load Balancing Backhaul Network Resiliency ERAS BRAS AN ES ERAS BRAS AN ES ERAS BRAS AN ES ERAS BRAS AN ES ERAS BRAS AN ES VRRP Active Spoke LSP < Link Fail > < Node Fail > < Link Fail > < Node Fail > VRRP Master Load Balancing VRRP Master Load Balancing VRRP Master Load Balancing VRRP Master  RFC 4762: Virtual Private LAN Service (VPLS) Using LDP Signaling, Jan. 2007  RFC 2338: Virtual Router Redundancy Protocol , April 1998
  8. 8. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 8 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backbone Network
  9. 9. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 9 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backbone Concept Metro Ethernet Backhaul Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 Metro Ethernet Backhaul PE1.CTY2 PE2.CTY2 PE1.CTY4 PE2.CTY4 PE1.CTY5 PE2.CTY5 PE1.CTY6 PE2.CTY6 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City 2 Metro Ethernet Backhaul Metro Ethernet Backhaul City 3 PE1.CTY3 PE2.CTY3 City 4 City 1 Metro Ethernet Backhaul City 5 City 6 City 7 CR1 CR2 CR3 Metro Ethernet Backhaul Metro Ethernet Backhaul MPLS L3 Internet VPN MPLS L3 VoIP VPN MPLS L3 Video VPN MPLS L3 Enterprise VPN MPLS L2 VPN (VPWS) MPLS L2 VPN (VPLS)  MPLS L3 VPN  Per-Service VPN • Internet VPN: Residential ADSL/FTTH/WiBro Internet Access, Enterprise ADSL/FTTB/WiBro Internet Access Service • Voice MPLS VPN • Video MPLS VPN  Per-Enterprise VPN • Enterprise MPLS L3 VPN  MPLS L2 VPN  Per-Enterprise VPN • Enterprise VPWS VPN • Enterprise VPLS VPN PE PE
  10. 10. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 10 Netmanias Technical document: MPLS Backhaul & Backbone Network Design ADSL Case DSLAM Residential Internet VLAN (C-VID=Internet, S-VID=AN1) Residential Voice VLAN (C-VID=Voice, S-VID=AN1) Residential Video VLAN (C-VID=Video, S-VID=AN1) MPLS L3 Internet VPN (LSP to BR) PE/BR PE BRAS VRF PE2 Per-Enterprise VLAN (C-VID=null, S-VID=Ent. A) MPLS L3 Internet VPN (LSP to PE:P2P) MPLS L3 VPN (LSP to PE 2) VRF VRF MPLS L3 Voice VPN (LSP to SAR) MPLS L3 Voice VPN (LSP to PE: Data) VRF MPLS L3 Video VPN (LSP to SAR) Per-Enterprise VLAN (C-VID=null, S-VID=Ent. B) VRF MPLS L2 VPN (VPWS) Per-Enterprise VLAN (C-VID=Private Use, S-VID=Ent. C) VSI MPLS L3 VPN (LSP to PE 3) MPLS L2 VPN (LSP to PE 2) Per-Enterprise VLAN (C-VID=Private Use, S-VID=Ent. D) Internet PVC (1/37) Voice PVC (1/35) Video PVC (1/36) A Single PVC A Single PVC A Single PVC A Single PVC VSI MPLS L2 VPN (LSP to PE 3) PE/SAR PE3 H-VPLS VRF VRF VRF Residential Internet Access Residential Voice Residential Video Enterprise Internet Access Enterprise L3 VPN Enterprise L2 VPN (PtP) Enterprise L2 VPN (PtMP) VRFVRFVRFVRFVRF VSIVSIVSIVSIVSIVSI VSIVSIVSIVSIVSIVSIVSI VRF VRF VSI VSI VSI PPPoE DHCP DHCP Static/Public Subnet Private Addressing and Routing Private Addressing and Routing Private Addressing and Routing Per-Service VRF (Internet)VRF VRF VRF Per-Service VRF (Voice) Per-Service VRF (Video) AS ES
  11. 11. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 11 Netmanias Technical document: MPLS Backhaul & Backbone Network Design FTTH Case OLT MPLS L3 Internet VPN (LSP to BR) PE/BR PE BRAS VRF PE2 MPLS L3 Internet VPN (LSP to PE:P2P) MPLS L3 VPN (LSP to PE 2) VRF VRF MPLS L3 Voice VPN (LSP to SAR) MPLS L3 Voice VPN (LSP to PE: Data) VRF MPLS L3 Video VPN (LSP to SAR) VRF MPLS L2 VPN (VPWS) VSI MPLS L3 VPN (LSP to PE 3) MPLS L2 VPN (LSP to PE 2) C-VID=Internet(5) C-VID=Voice(3) C-VID=Video(4) C-VID=Ent. A C-VID=Ent. B C-VID=Ent. C C-VID=Ent. D VSI MPLS L2 VPN (LSP to PE 3) PE/SAR PE3 H-VPLS VRF VRF VRF Residential Internet Access Residential Voice Residential Video Enterprise Internet Access Enterprise L3 VPN Enterprise L2 VPN (PtP) Enterprise L2 VPN (PtMP) VRFVRFVRFVRFVRF VSIVSIVSIVSIVSIVSI VSIVSIVSIVSIVSIVSIVSI VRF VRF VSI VSI VSI Residential Internet VLAN (C-VID=Internet, S-VID=AN1) Residential Voice VLAN (C-VID=Voice, S-VID=AN1) Residential Video VLAN (C-VID=Video, S-VID=AN1) DHCP DHCP DHCP Static/Public Subnet Private Addressing and Routing Private Addressing and Routing Private Addressing and Routing Per-Service VRF (Internet)VRF VRF VRF Per-Service VRF (Voice) Per-Service VRF (Video) AS ES Per-Enterprise VLAN (C-VID=null, S-VID=Ent. A) Per-Enterprise VLAN (C-VID=null, S-VID=Ent. B) Per-Enterprise VLAN (C-VID=Private Use, S-VID=Ent. C) Per-Enterprise VLAN (C-VID=Private Use, S-VID=Ent. D)
  12. 12. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 12 Netmanias Technical document: MPLS Backhaul & Backbone Network Design WiBro Case MPLS L3 Internet VPN (LSP to BR) PE/BR PE VRF PE2 MPLS L3 Internet VPN (LSP to PE:P2P) VRF VRF MPLS L3 Voice VPN (LSP to SAR) MPLS L3 Voice VPN (LSP to PE: Data) VRF MPLS L3 Video VPN (LSP to SAR) CID=Internet CID CID=Voice CID CID=Video CID PE/SAR PE3 VRF VRF VRF Residential Internet Access Residential Voice Residential Video Residential Internet VLAN (C-VID=Internet, S-VID=RAS1) Residential Voice VLAN (C-VID=Voice, S-VID=RAS1) Residential Video VLAN (C-VID=Video, S-VID=RAS1) BS ASN-GWL3 Per-Service VRF (Internet)VRF VRF VRF Per-Service VRF (Voice) Per-Service VRF (Video)GRE tunnel DHCP AS ES
  13. 13. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 13 Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPN Service  MPLS L3 VPN  MPLS L2 VPN  Virtual Private Wire Service (VPWS)  Virtual Private LAN Service (VPLS)
  14. 14. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 14 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise RFC 2547bis defines a mechanism that allows service providers to use their IP backbone to provide VPN services to their customers. RFC 2547bis VPNs are also known as BGP/MPLS VPNs because BGP is used to distribute VPN routing information across the provider's backbone and because MPLS is used to forward VPN traffic from one VPN site to another. Metro Ethernet Backhaul Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 CE VPN A Metro Ethernet Backhaul PE1.CTY2 PE2.CTY2 PE1.CTY4 PE2.CTY4 PE1.CTY5 PE2.CTY5 PE1.CTY6 PE2.CTY6 PE1.CTY7 PE2.CTY7 CE VPN A Metro Ethernet Backhaul City 2 CE Metro Ethernet Backhaul CE Metro Ethernet Backhaul City 3 PE1.CTY3 PE2.CTY3 City 4 City 1 Metro Ethernet BackhaulCity 5 City 6 City 7 CR1 CR2 CR3 CE CE PE PE CEP P IP/MPLS Network
  15. 15. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 15 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Tunnel LSP Setup: RSVP-TE PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2 CR3 PATH ERO = {CR1, CR2, PE1.CTY5} PATH ERO = {CR2, PE1.CTY5} PATH ERO = {PE1.CTY5} RESV Label = 17 RESV Label = 20 RESV Label = 3 Ingress Routing Table In Out(port/label) IP Route 2/17 MPLS Table In(port/Label) Out(port/label) 3/17 6/20 MPLS Table In(port/Label) Out(port/label) 2/20 5/3 RVSP-TE PATH Message  Establish state and request label assignment  PE1.CTY1 transmit a PATH message addressed to PE1.CTY5  Label Request Object  ERO = {Strict CR1, strict CR2, strict PE1.CTY5}  PRO = {PE1.CTY1 IP address, store and add IP hop address}  Session object identifies LSP name  Session Attribute: Priority, Preemption and Fast Reroute  Flow-Spec: Request Bandwidth Reservation RVSP-TE RESV Message  Distribute labels and reserve resource  PE1.CTY5 transmits a RESV message to PE1.CTY1  Label = 3  Session object to uniquely identify the LSP  CR2 and CR1  Stores “Outbound” label and allocate an “Inbound” label  Transmits RESV with inbound label to upstream LSR  PE1.CTY1 binds label to FEC Tunnel LSP RSVP-TE for Traffic Engineering RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels, December 2001
  16. 16. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 16 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Constraint-Based Routing Routing Table Traffic Engineering Database (TED) User Constraints Constrained Shortest Path First (CSPF) Explicit Route RSVP Signaling 1) Store information from IGP flooding 3) Examine user defined constraints 4) Calculate the physical path for the LSP 5) Represent path as an explicit route 6) Pass ERO to RSVP for signaling 2) Store traffic engineering information Extended IGP (OSPF-TE, IS-IS TE)
  17. 17. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 17 Netmanias Technical document: MPLS Backhaul & Backbone Network Design CE-PE Routing: OSPF, RIP, BGP, Static Route PE-PE Routing: MP-iBGP Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City1 City5 CR1 CR2 CR3 Site-2, VPN-B 10.1.2.0/24 RIP Site-2, VPN-A 10.1.2.0/24 IS-IS  IGP (IS-IS) advertises IPv4 route Site-1, VPN-B 10.1.1.0/24 RIP Site-1, VPN-A 10.1.1.0/24 IS-IS CE2 CE2 CE1 CE1 VRF Green Destination BGP Next Hop Inner Label 10.1.2.0/24 PE1.CTY5 10 VRF Yellow Destination BGP Next Hop Inner Label 10.1.2.0/24 PE1.CTY5 12 VRF Green VRF Green MP-iBGP •Destination = RD_Green:10.1.2/24 •Label = 10 •BGP Next Hop = PE1.CTY5 •Route Target = Green  IGP (IS-IS) advertises IPv4 route  MP-iBGP advertises VPNv4 route with MPLS label and RTs.  RT indicate to which VRF the route is imported. RD is removed from VPNv4 route. IPv4 route is inserted into VRF Green routing table.  IPv4 route is inserted in VRF Green routing table.  IPv4 route is redistributed into MP- iBGP. RD is added to IPv4 route to make it a VPNv4 route. RTs are added. CE PE PE CEP P MPLS L3 VPN for Enterprise: VPN Route Distribution
  18. 18. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 18 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B 10.1.2.0/24 RIP Site-2, VPN-A 10.1.2.0/24 IS-IS Site-1, VPN-B 10.1.1.0/24 RIP Site-1, VPN-A 10.1.1.0/24 IS-IS CE2 CE2 CE1 CE1 VRF Green Destination BGP Next Hop Inner Label 10.1.2.0/24 PE1.CTY5 10 VRF Yellow Destination BGP Next Hop Inner Label 10.1.2.0/24 PE1.CTY5 12 Global Routing Table Destination IGP Next Hop Tunnel Label PE1.CTY5 CR1 25 MPLS Table In (port/label) Out (port/label) 1/25 3/30 IGP Label(25) VPN Label(10) 10.1.2.5 IGP Label(30) VPN Label(10) 10.1.2.5 IGP Label(0) VPN Label(10) 10.1.2.5 Egress PE router(PE1.CTY5) removes top label, uses inner label to select which VPN/CE to forward the packet to. Inner label is removed and packet sent to CE2 router 10.1.2.5 VRF Green VRF Green PE1.CTY1 router receives normal IP packet from CE1 router. PE1.CTY1 router does “IP Longest Match” from VRF, finds iBGP next hop PE1.CTY5 and imposes a stack of labels P routers switch the packet based on the IGP Label (top label) MPLS Table Incoming (port/Inner label) Outgoing interface 1/10 if2 10.1.2.5 MPLSL3VPNforEnterprise: ForwardingCustomerTrafficAcrosstheBGP/MPLSBackbone
  19. 19. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 19 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Metro Ethernet Backhaul Metro Ethernet Backhaul PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City 1 City 5 City 7 CR1 CR2 CR3 CE2 CE3 CE1 A pair of VC-LSPs PE1.CTY1 S-VID 200/Eth10 S-VID 200/Eth20 S-VID 200/Eth30 PE1.CTY1 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VID 201 I T V RT Video RT Voice Best Effort Mission Critical M Eth10 PE1.CTY5 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VID 201 I T V RT Video RT Voice Best Effort Mission Critical M Eth20 100Mbps shaper Customer Classification (VC-Label) Application Classification (5-Tuple) 5Mbps shaper PE1.CTY7 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VID 201 I T V RT Video RT Voice Best Effort Mission Critical M Eth30 5Mbps shaper Service Rate Control at each PE participating a VPLS instance  Upstream Rate Control: Ingress Rate Limiting  Downstream Rate Control: Egress Rate Shaping  Granularity of Rate Control: 1Mbps A pair of VC-LSPs A pair of VC-LSPs VPN A VPN A VPN A MPLS L3 VPN: Rate Control Per-Customer and Per- Site
  20. 20. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 20 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-A Branch Office Site-1, VPN-A Headquarter CE2 CE1 QinQ (Per-enterprise VLAN) H-VPLS Tunnel Signaling (LDP/RSVP-TE) VPN Routing (OSPF, RIP, Static, etc.) VPN Route and Label Distribution (MG-iBGP) IGP (IS-IS) QinQ (Per-enterprise VLAN) VLL/ H-VPLS VPN Routing (OSPF, RIP, Static, etc.) Metro Aggregation IP/MPLS Backbone Metro Aggregation CE PE PE CEP P VRF Green VRRP between VRFs S-VID 100 S-VID 100 VRF Green VRF Green vc-lsp 100 vc-lsp 200 S-VID 100  VRF configuration in 2 PE routers. Backhaul is connected to PE through 2 VLANs  VRRP redundancy per VRF between PE routers (255 VRRP instance for VRF)  Ex) PE redundancy in Headquarter site, and single PE in Branch office S-VID 100 MPLS L3 VPN for Enterprise: PE Redundancy
  21. 21. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 21 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Benefits of BGP/MPLS VPNs The major objective of BGP/MPLS VPNs is to simplify network operations for customers while allowing the service provider to offer scalable, revenue-generating, value-added services. BGP/MPLS VPNs has many benefits, including the following.  There are no constraints on the address plan used by each VPN customer. The customer can use either globally unique or private IP address spaces. From the service provider's perspective, different customers can have overlapping address spaces.  The CE router at each customer site does not directly exchange routing information with other CE routers. Customers do not have to deal with inter-site routing issues because inter-site routing issues are the responsibility of the service provider.  VPN customers do not have a backbone or a virtual backbone to administer. Thus, customers do not need management access to PE or P routers.  Providers do not have a separate backbone or virtual backbone to administer for each customer VPN. Thus, providers do not require management access to CE routers.  The policies that determine whether a specific site is a member of a particular VPN are the policies of the customer. The administrative model for RFC 2547bis VPNs allows customer policies to be implemented by the provider alone or by the service provider working together with the customer.  The VPN can span multiple service providers. While this capability of BGP/MPLS VPNs is important, this paper does not describe inter-provider VPN solutions.  Without the use of cryptographic techniques, security is equivalent to that supported by existing Layer 2 (ATM or Frame Relay) backbone networks.  Service providers can use a common infrastructure to deliver both VPN and Internet connectivity services.  Flexible and scalable QoS for customer VPN services is supported through the use of the experimental bits in the MPLS shim header or by the use of traffic engineered LSPs (signaled by RSVP).  The RFC 2547bis model is link layer (Layer 2) independent.
  22. 22. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 22 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise Features Maximum Number of 802.1Q (VLAN) Circuits 26K Maximum Number of 802.1ad (QinQ) Circuits 26K Maximum Number of LSPs (LDP) 2.4K Maximum Number of LSPs (RSVP-TE) 50K Maximum Number of VRF 4K Maximum VPN Route Entries per VRF 500K Maximum Number of MPLS L3 VPN Instances 4K Juniper M-series
  23. 23. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 23 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B Site-2, VPN-A Site-1, VPN-B Site-1, VPN-A CE2 CE1 CE1 Per-enterprise VLAN (QinQ) VLL/ H-VPLS Tunnel Signaling (LDP/RSVP-TE) PW Signaling (Martini Signaling: Targeted LDP) IGP (IS-IS) VLL/ H-VPLS Metro Aggregation IP/MPLS Backbone Metro Aggregation Martini signaling T-LDP DU-LDP Point-to-Point Transparent LAN Service (Customer VLAN (C-VID)) PW (vc-lsp) Per-enterprise VLAN (QinQ) CE2 Standard: RFC 4448 (Martini), Encapsulation Methods for Transport of Ethernet over MPLS Networks, April 2006 RFC 4447 (Martini), Pseudowire Setup and Maintenance Using LDP, April 2006 MPLS L2 VPN: VLL/VPWS/EoMPLS Service
  24. 24. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 24 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L2 VPN: VLL/VPWS/EoMPLS Service Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B Site-2, VPN-A Site-1, VPN-B Site-1, VPN-A CE2 CE2 CE1 CE1 PE1.CTY5 configured: Local S-VID200 on Ethernet20 to be configured with VCID 2400 going to PE1.CTY1. PE1.CTY1 configured: Local S-VID200 on Ethernet30 to be configured with VCID 2400 going to PE1.CTY5. VCID (Virtual Circuit ID) represents the provisioned ID for the “circuit” between the (Ethernet port + VLAN ID) entities provisioned in the 2 PEs (PE1.CTY1 and PE1.CTY5) Tunnel LSP 1. Configuring PE Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B Site-2, VPN-A Site-1, VPN-B Site-1, VPN-A CE2 CE2 CE1 CE1 Tunnel LSP PE1.CTY5 binds the VCID 2400 to vc-label 2000 DU-LDP Label Mapping Message VC FEC TLV: • VC Type = Ethernet • VCID = 2400 VC Label TLV: • vc-label = 2000 PE1.CTY1 binds vc-label 2000 to local VLAN 200 on Eth30 using VCID 2400 as common ID S-VID 200/Eth30 S-VID 200/Eth20 S-VID 200/Eth30 S-VID 200/Eth20 2. VC Label Mapping and DU-LDP Signaling VCID 2400 Port VLAN(S-VID) VC-Label Tunnel Label 30 200 2000 100 Unidirectional representation: same steps for PE1.CTY1 to PE1.CTY5 direction Vc-label 2000
  25. 25. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 25 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L2 VPN: VLL/VPWS/EoMPLS Service Tunnel Label(25) VC Label(10) D-MAC/S-MAC S-VID C-VID IP Packet Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B Site-2, VPN-A Site-1, VPN-B Site-1, VPN-A CE2 CE2 CE1 Tunnel LSP S-VID 200/Eth30 S-VID 200/Eth20 3. Packet Forwarding VCID 2400 Port VLAN(S-VID) VC-Label Tunnel Label 30 200 2000 100 MPLS Table In (port/label) Out (port/label) 1/25 3/30 Vc-label 2000 D-MAC/S-MAC C-VID IP Packet Tunnel Label(30) VC Label(10) D-MAC/S-MAC S-VID C-VID IP Packet D-MAC/S-MAC S-VID(200) C-VID IP Packet D-MAC/S-MAC S-VID(200) C-VID IP Packet Tunnel Label(0) VC Label(10) D-MAC/S-MAC S-VID C-VID IP Packet D-MAC/S-MAC C-VID IP Packet CE1
  26. 26. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 26 Netmanias Technical document: MPLS Backhaul & Backbone Network Design EoMPLS Service: QoS Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B Site-2, VPN-A Site-1, VPN-B Site-1, VPN-A CE2 CE2 CE1 Tunnel LSP S-VID 200/Eth30 S-VID 200/Eth20 PW CE1 PE1.CTY1 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VID 201 I T V RT Video RT Voice Best Effort Mission Critical M S-VID 202 Eth30 PE1.CTY5 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VID 201 I T V RT Video RT Voice Best Effort Mission Critical M S-VID 202 Eth20 Per-Enterprise Rate Shaping (1Mbps increment from 1Mbps to 1Gbps) 5Mbps shaper A customer traffic is classified to the application level and mapped to 4 Traffic class Customer Classification Application Classification Virtual Leased Line 3Mbps shaper 20Mbps shaper 5Mbps shaper 3Mbps shaper 20Mbps shaper
  27. 27. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 27 Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Service Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 Metro Ethernet Backhaul City 1 City 5 CR1 CR2 CR3 Site-2, VPN-B Site-2, VPN-A Site-1, VPN-B Site-1, VPN-A CE2 CE1 CE1 Per-enterprise VLAN(QinQ) VLL/ H-VPLS Tunnel Signaling (LDP/RSVP-TE) PW Signaling (Martini Signaling: Targeted LDP) IGP (IS-IS) VLL/ H-VPLS Metro Aggregation IP/MPLS Backbone Metro Aggregation Martini signaling T-LDP DU-LDP Point-to-Multi-Point Transparent LAN Service VPLS (Full-Meshed PW) Per-enterprise VLAN(QinQ) CE2PE1.CTY7 PE2.CTY7 PE1.CTY3 PE2.CTY3 City 7 Standard: RFC 4762: Virtual Private LAN Service (VPLS) Using LDP Signaling, Jan. 2007 RFC 4761: RFC 4761 on Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling, Jan. 2007 RFC 4664: Framework for Layer 2 Virtual Private Networks (L2VPNs), Sep. 2006 VSI VSI VSIVSI
  28. 28. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 28 Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Reference Model Metro Ethernet Backhaul Metro Ethernet Backhaul PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City 1 City 5 City 7 CR1 CR2 CR3 CE CE CE CE MPLS Tunnel LSP (Full-Mesh) Pseudo Wire (a pair of vc-lsp) VSI Green VSI Violet VSI Green VSI Violet VSI Green VSI Violet CE CE
  29. 29. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 29 Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Instance Creation: PW Signaling Metro Ethernet Backhaul Metro Ethernet Backhaul PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City1 City5 City7 CR1 CR2 CR3 CE CE CE CE CE CE Use vc-label 201 for VCID 1000 when sending to me FIB for VPLS 1000 (PE1.CTY1) MAC Location Interface Local Eth10, S-VID 200 Remote Tunnel to PE1.CTY5(vc-lsp102) Remote Tunnel to PE1.CTY7(vc-lsp103) PW12 Use vc-label 102 for VCID 1000 when sending to me T-LDP(PE1.CTY1PE1.CTY5): For SVC-ID 1000, use VC- label 201 when sending to me T-LDP(PE1.CTY5PE1.CTY1): For SVC-ID 1000, use VC- label 102 when sending to me T-LDP(PE1.CTY1PE1.CTY7): For SVC-ID 1000, use VC- label 301 when sending to me T-LDP(PE1.CTY7PE1.CTY1): For SVC-ID 1000, use VC- label 103 when sending to me T-LDP(PE1.CTY5PE1.CTY7): For SVC-ID 1000, use VC- label 302 when sending to me T-LDP(PE1.CTY7PE1.CTY5): For SVC-ID 1000, use VC- label 203 when sending to me T-LSP signaling for creating PW12PE1.CTY1 1. T-LSP signaling for creating Full-Mesh PW 2. VPLS Instance (VSI) Creation FIB for VPLS 1000 (PE1.CTY5) MAC Location Interface Local Eth20, S-VID 200 Local Eth20, S-VID 300 Remote Tunnel to PE1.CTY1(vc-lsp201) Remote Tunnel to PE1.CTY7(vc-lsp203) FIB for VPLS 1000 (PE1.CTY7) MAC Location Interface Local Eth30, S-VID 200 Remote Tunnel to PE1.CTY5(vc-lsp302) Remote Tunnel to PE1.CTY1(vc-lsp301) S-VID 200/Eth10 S-VID 200/Eth20 S-VID 200/Eth30 S-VID 300/Eth20
  30. 30. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 30 Netmanias Technical document: MPLS Backhaul & Backbone Network Design 3. Data Forwarding (VPLS MAC Learning) Metro Ethernet Backhaul Metro Ethernet Backhaul PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City1 City5 City7 CR1 CR2 CR3 CE CE CE CE CE CE FIB for VPLS 1000 (PE1.CTY1) MAC Location Interface M1 Local Eth10, S-VID 200 Remote Tunnel to PE1.CTY5(vc-lsp102) Remote Tunnel to PE1.CTY7(vc-lsp103) PW12 PE1.CTY1 FIB for VPLS 1000 (PE1.CTY5) MAC Location Interface Local Eth20, S-VID 200 Local Eth20, S-VID 300 M1 Remote Tunnel to PE1.CTY1(vc-lsp201) Remote Tunnel to PE1.CTY7(vc-lsp203) FIB for VPLS 1000 (PE1.CTY7) MAC Location Interface Local Eth30, S-VID 200 M1 Remote Tunnel to PE1.CTY5(vc-lsp302) Remote Tunnel to PE1.CTY1(vc-lsp301) S-VID 200/Eth10 S-VID 200/Eth20 S-VID 200/Eth30 Once the VPLS instance with vc-id 1000 has been created, the first packets can be sent and the MAC learning process starts. Assume M1 is sending a packet to PE1.CTY5 destined for M2 (M2 and M1 are each identified by a unique MAC address).  PE1.CTY1 receives the packet and learns (from the source MAC address) that M1 can be reached on local port Eth 10, S-VID 200; it stores this information in the FIB for vc-id 1000.  PE1.CTY1 does not yet know the destination MAC address M2, so it floods the packet to PE1.CTY5 with VC label 102 (on the corresponding MPLS outer tunnel) and to PE1.CTY7 with VC label 103 (on the corresponding MPLS outer tunnel).  PE1.CTY5 learns from VC label 201 that M1 is behind PE1.CTY1; it stores this information in the FIB for vc-id 1000.  PE1.CTY7 learns from VC label 302 that M1 is behind PE1.CTY1; it stores this information in the FIB for vc-id 1000. Tunnel Label(25) VC Label(102) D-MAC = M2 S-MAC = M1 S-VID = 200 C-VID = 100 IP Packet D-MAC = M2 S-MAC = M1 S-VID = 200 C-VID = 100 IP Packet M1 S-VID 300/Eth20 M2 M3 M4 Tunnel Label(15) VC Label(103) D-MAC = M2 S-MAC = M1 S-VID = 200 C-VID = 100 IP Packet D-MAC = M2 S-MAC = M1 S-VID = 200 C-VID = 100 IP Packet D-MAC = M2 S-MAC = M1 S-VID = 300 C-VID = 100 IP Packet VPLS MAC Learning and Packet Forwarding
  31. 31. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 31 Netmanias Technical document: MPLS Backhaul & Backbone Network Design  PE1.CTY5 strips off label 102, does not know the destination M2 and floods the packet on ports Eth 20, S-VID 200 and Eth20, S-VID 300; PE1.CTY5 does not flood the packet to PE1.CTY7 because of the split horizon rule.  PE1.CTY7 strips off label 103, does not know the destination M2 and sends the packet on port Eth30, S-VID 200; PE1.CTY7 does not flood the packet to PE1.CTY5 because of the split horizon rule.  M2 receives the packet. When M2 receives the packet from M1, it replies with a packet to M1:  PE1.CTY5 receives the packet from M2 and learns that M2 is on local port Eth 20, S-VID 200; it stores this information in the FIB for vc-id 1000.  PE1.CTY5 already knows that M1 can be reached via PE1.CTY1 and therefore only sends the packet to PE1.CTY1 using VC label 201.  PE1.CTY1 receives the packet for M1; it knows that M1 is reachable on port Eth 10, S-VID 200.  M1 receives the packet. Metro Ethernet Backhaul Metro Ethernet Backhaul PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City1 City5 City7 CR1 CR2 CR3 CE CE CE CE CE CE PW12 PE1.CTY1 S-VID 200/Eth10 S-VID 200/Eth20 S-VID 200/Eth30 Tunnel Label(12) VC Label(201) D-MAC = M1 S-MAC = M2 S-VID = 200 C-VID = 100 IP Packet D-MAC = M1 S-MAC = M2 S-VID = 200 C-VID = 100 IP Packet M1 S-VID 300/Eth20 M2 M3 M4 D-MAC = M1 S-MAC = M2 S-VID = 200 C-VID = 100 IP Packet FIB for VPLS 1000 (PE1.CTY1) MAC Location Interface M1 Local Eth10, S-VID 200 M2 Remote Tunnel to PE1.CTY5(vc-lsp102) Remote Tunnel to PE1.CTY7(vc-lsp103) FIB for VPLS 1000 (PE1.CTY5) MAC Location Interface M2 Local Eth20, S-VID 200 Local Eth20, S-VID 300 M1 Remote Tunnel to PE1.CTY1(vc-lsp201) Remote Tunnel to PE1.CTY7(vc-lsp203) FIB for VPLS 1000 (PE1.CTY7) MAC Location Interface Local Eth30, S-VID 200 M1 Remote Tunnel to PE1.CTY5(vc-lsp302) Remote Tunnel to PE1.CTY1(vc-lsp301) VPLS MAC Learning and Packet Forwarding
  32. 32. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 32 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Metro Ethernet Backhaul Metro Ethernet Backhaul PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 Metro Ethernet Backhaul City1 City5 City7 CR1 CR2 CR3 CE CE CE CE CE CE PW12 PE1.CTY1 S-VID 200/Eth10 S-VID 200/Eth20 S-VID 200/Eth30 PE1.CTY1 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VLAN 201 I T V RT Video RT Voice Best Effort Mission Critical M Eth10 PE1.CTY5 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VLAN 201 I T V RT Video RT Voice Best Effort Mission Critical M Eth20 100Mbps shaper Customer Classification Application Classification 5Mbps shaper PE1.CTY7 Per-Enterprise Hierarchical shaping (PIR/CIR) S-VID 200 S-VLAN 201 I T V RT Video RT Voice Best Effort Mission Critical M Eth30 5Mbps shaper Service Rate Control At Each PE participating a VPLS instance  Upstream Rate Control: Ingress Rate Limiting  Downstream Rate Control: Egress Rate Shaping  Granularity of Rate Control: 1Mbps PW13 PW23 VPLS Rate Control Per-Customer and Per- Site
  33. 33. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 33 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Features Maximum number of 802.1Q (VLAN) Circuits 26K Maximum number of 802.1ad (QinQ) Circuits 26K Maximum number of LSPs (LDP) 2.4K Maximum number of LSPs (RSVP-TE) 50K Maximum number of VPWS instances 16K Maximum number of VPLS instances 2K Maximum number of MAC addresses 850K MPLS L2 VPN for Enterprise: Scaling Characteristics Juniper M-series
  34. 34. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 34 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Protection
  35. 35. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 35 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Path Protection: Secondary Path 1. Outage 1) Link Failure 2) Node Failure (RSVP Hello) PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2 Primary LSP Secondary LSP 2. RSVP Patherr and Resvtear unicast to ingress PE  Ingress PE switches traffic to pre-established secondary path  Secondary LSP (Standby LSP Case)  Path: Pre-computed (CSPF)  BW Reservation: Pre-Signaled (RSVP-TE) 1. Secondary LSP: Pre-computed/Pre-signaled backup LSP  Secondary paths support the configuration of primary and secondary physical paths for an LSP to protect against link and transit node forwarding plane failures.  The primary path is the preferred path while the secondary path is used as an alternative route when the primary path fails.  There are two types of secondary paths: standby and non-standby.  A standby secondary path is pre-computed and pre-signaled while a non-standby secondary path is pre-computed but is not pre-signaled. 2. Normal Operation PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2 Primary LSP Secondary LSP RSVP Hello RSVP Hello RSVP Hello 3. Network Impairment PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2Primary LSP Secondary LSP 4. Protection Switching PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2 Primary LSP Secondary LSP CR3 CR3 CR3 CR3
  36. 36. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 36 Netmanias Technical document: MPLS Backhaul & Backbone Network Design 1. Outage 1) Link Failure 2) Node Failure (RSVP Hello) PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2LSP 3. RSVP Patherr and Resvtear unicast to ingress PE 1. Detour LSP Pre-Setup  Fast reroute (or one-to-one backup) allows an LSR immediately upstream from an outage to quickly route around a failed link or node to an LSR downstream of the outage.  This is accomplished by pre-computing and pre-establishing detour paths that bypass the immediate downstream link and the next-hop LSR.  For LSP PE1.CTY1-to-PE1.CTY5, the following detours are established  PE1.CTY1 create a detour to PE1.CTY5 via CR3  CR1 create a detour to PE1.CTY5 via CR3  CR2 create a detour to PE1.CTY5 via CR3 2. Normal Operation PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2 RSVP Hello RSVP Hello RSVP Hello 3. Network Impairment PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 CR1 CR2 2. CR2 switches traffic to its dedicated detour path Detours LSPs 4. Re-optimization  Fast reroute provides local repair and allows connectivity to be restored faster than traffic can be switched by the ingress LSR to a standby secondary LSP.  Fast reroute is only a short-term solution because the detour paths may not provide adequate bandwidth and the activation of a detour path can result in congestion on bypass links.  As soon as the ingress router calculates a new path avoiding the failure, traffic is redirected along the new path, detours are torn down, and new detours established. Local Protection: Fast Reroute (1:1 Protection) CR3 CR3 CR3
  37. 37. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 37 Netmanias Technical document: MPLS Backhaul & Backbone Network Design PE1.CTY3 PE2.CTY3 PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 CR1 CR2 LSP1: PE1.CTY3-to-PE1.CTY5 LSP2: PE1.CTY1-to-PE1.CTY7 LSP1 LSP2  Many-to-one (facility backup) is based on interface rather than on LSP. While fast reroute protects interfaces or nodes along the entire path of a LSP, many-to-one protection can be applied on interfaces as needed.  A bypass path is set up around the link to be protected using an alternate interface to forward traffic.  Link protection (or many-to-one backup) allows an LSR immediately upstream from a link failure to use an alternate interface to forward traffic to its downstream neighbor LSR.  This is accomplished by pre-establishing a bypass path that is shared by all protected LSPs traversing the failed link. A single bypass path safeguards the set of protected LSPs.  The bypass path is shared by all protected LSPs traversing the failed link (many LSPs protected by one bypass path). Bypass Path 1. Bypass Path Pre-Setup PE1.CTY3 PE2.CTY3 PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 CR1 CR2LSP1 LSP2 Bypass Path 2. Network Impairment (Link Failure) 1. Link Failure 3. RSVP Patherr and Resvtear unicast to ingress PE 2. CR1 switches all LSP traffic to the bypass link  When an outage occurs, the router immediately upstream from the link outage switches protected traffic to the bypass link, then signals the link failure to the ingress router.  Like fast reroute, link protection provides local repair and restores connectivity faster than the ingress router switching traffic to a standby secondary path.  However, unlike fast reroute, link protection does not provide protection against the failure of the downstream neighbor. Local Protection: Link Protection (Many-to-one or facility backup) CR3 CR3
  38. 38. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 38 Netmanias Technical document: MPLS Backhaul & Backbone Network Design PE1.CTY3 PE2.CTY3 PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 CR1 CR2 LSP1: PE1.CTY3-to-PE1.CTY5 LSP2: PE1.CTY3-to-PE1.CTY7 LSP1 LSP2  Next-hop bypass: Provides an alternate route for an LSP to reach a neighboring router. This type of bypass path is established when you enable either node-link protection or link protection.  Next-next-hop bypass: Provides an alternate route for an LSP through a neighboring router en route to the destination router. This type of bypass path is established exclusively when node-link protection is configured. 1. Bypass Path Pre-Setup 2. Network Impairment (Link Failure) 1. Link Failure 2. PE1.CTY3 switches all LSP traffic to the NHOP bypass link NHOP bypass NNHOP bypass PE1.CTY3 PE2.CTY3 PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 CR1 CR2LSP1 LSP2 NHOP bypass Link Failure 1. Node Failure 2. PE1.CTY3 switches all LSP traffic to the NNHOP bypass link PE1.CTY3 PE2.CTY3 PE1.CTY1 PE2.CTY1 PE1.CTY5 PE2.CTY5 PE1.CTY7 PE2.CTY7 CR1 CR2LSP1 LSP2 NNHOP bypass Node Failure Local Protection: Node-Link Protection (Many-to-one or facility backup) CR3 CR3 CR3
  39. 39. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 39 Netmanias Technical document: MPLS Backhaul & Backbone Network Design End of Document
  40. 40. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 40 Carrier WiFi Data Center Migration Wireline Network LTE Mobile Network Mobile WiMAX Carrier Ethernet FTTH Data Center Policy Control/PCRF IPTV/TPS Metro Ethernet MPLS IP Routing 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 eMBMS/Mobile IPTV Services CDN/Mobile CDN Transparent Caching BSS/OSS Cable TPS Voice/Video Quality IMS LTE Backaul Netmanias Research and Consulting Scope Visit http://www.netmanias.com to view and download more technical documents.

×