Vans Scribe

1,091 views

Published on

Workshop scribe

Published in: Technology, Sports
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,091
On SlideShare
0
From Embeds
0
Number of Embeds
130
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Vans Scribe

  1. 1. Hello, just Van here doing the  scribe for GreyM. So, I will  declare that, tomorrow,  GreyM is scribing, for sure.  Hopefully.
  2. 2. So, today's class began  with Chris's scribe, and  the Carnival of  Mathematics, and how  they wanted to include  his scribe.  Congratulations to him.
  3. 3. So, as promised by Mr.  K, we had a workshop,  with review questions to  help prepare us for the  test on Wednesday. Don't  forget to BOB!
  4. 4. And also, since I don't have equation  editor on Microsoft Word on my  computer, a lot of formulas/equations  might look a little... pixelated. I  appologize in advance.
  5. 5. Just this moment after 45 minutes of work  I have just found the notebook's equation  editor... sorta. By accident. So, now the  pictures aren't going to be pixelated! ... but they do look a little odd. Better than  blur! In your face Microsoft Word!
  6. 6. In order to approximate the integral below with the greatest possible error of  0.0001, how large must  n be if you use a: 2   (a) trapezoid sum? 1 (b) midpoint sum? ∫ 2 dx 1 x How'd we get 71? Show you in the  next slide(s). (With explanations)
  7. 7. So, a few days back, we use this formula (thank god we don't have to  remember it... yet) and apply it to our question. b 3 M(b ­ a) ______ 2 ∫ f(x)dx ­ Trap n ≤ 2 12n a 2   1 ∫ 2 dx 1 x
  8. 8.   b 3 2 1 M(b ­ a) ______ 2 ∫ 2 dx ∫ f(x)dx ­ Trap n ≤ 12n 2 1 x a So, first we find the 2nd derivative of the  function, to determine M 2 
  9. 9. Solve for M 2 (1) ­4 M2(1) = 6(1) = 6 So, now we have M 2  and try to solve for  n  now. And we substitute our values in...
  10. 10. b 3 M(b ­ a) ______ 2 ∫ f(x)dx ­ Trap n ≤ 2 12n a 3 0.0001 ≤ 6(2­1) Since... 2 12n 0.0012n 2 ≤6 or n 2 ≤5000 n ≤ 71 Then...
  11. 11. 1 __ Since... 0.0001 ≤ 2n 2 2 10000 ≥ 2n ______ √5000 ≥ n Then... 71 ≥n
  12. 12.   b 3 2 M(b ­ a) ______ 2 1 ∫ f(x)dx ­ Trap ≤ ∫ 2 dx n 12n 2 1 x a b 3 M(b ­ a) ______ 2 ∫ f(x)dx ­ Trap Mid n ≤ 2 12n 24 a (b) midpoint sum? 71 Only thing that  = 35.5 changed is the divisor.  So, instead of  n = 71,  2 (round up) divide by 2 and round  up (since n must be a  positive integer) n = 36
  13. 13. Okay, so, those first 12 slides took  me 2 hours. But, I'm busy chatting  with people on msn, discovery of  the Equation Editor, and not  having a writing utility of  somesort. This is actually kinda  fun. So, now, to find some  derivatives.
  14. 14. Find these derivatives: d dx sin ­1 ( x) 1 1 ­2 1 2 ­x Applying chain rule, we get  √1 ­ ( ) x our final answer to be 1 1 2 ­x 2 √1 ­ ( ) x
  15. 15. Find these derivatives: d 1 arctan x dx 4 ( 4) 1 x 4 [ d arctan dx ( 4) ] Again, applying chain rule,  we get our answer to be: 16 (1 1 + 1 ( x 2 4) )
  16. 16. d Find these derivatives: arc  cot(x) dx Let First we make a  arc  cot(x) =y substitution Then take the  cot  of both  cot(arccot(x)) = cot(y) sides to solve for x Then we differentiate  x = cot(y) both sides 1 = ­ csc (y)2 y ' (Continues next page...)
  17. 17. 1 = ­ 2 csc (y) y ' 1 Rearrange equation to solve for y` y = ­' 2 csc   (y) Then input what csc (y) is 2 1 √1 + x 2 ' y = ­ 1 2 1 ( √1 + x ) 2 y x y = ' ­ 1­x 2
  18. 18. Okay, and at this point in time, I am  now 3 hours into the work. Getting  used to this repetitive grouping/ copy/  paste/ capture/ enlarging/ moving/ lots  of other things. So, now to the aunty derivatives! And don't forget to put +C
  19. 19. Find these antiderivatives: dx ∫ 4+x 2 First, we factor  1 = ∫4 1 1+ 4 x(2 ) dx out 1/4 then 2 make x /4 to be  2 (x/2)  so we can  1 1 ( ) = 4 ∫ 1 + ( x ) 2 dx antidifferentiate  2 the quot;thingquot; into       ­1 1 ­1 ( x ) tan  and place  = 4 tan 2 + c (x/2) back in
  20. 20. dx ∫ √4 ­ x 2 dx First factor out  4 √ =∫ x2 2√ ­ 1 √4 take the square root    of x 2/2 and square it,  1 1 to make it  = 2 ∫ 1 ­ x 2 dx differentiateable √ (√2 ) anti­differentiate the  1 arc sin x (√2 ) + C quot;thingquot; = 2
  21. 21. Find these antiderivatives:   dx ∫ x  2 + 4x + 5 quot;Complete the  1 squarequot; or add 0  =∫ dx to make a  x2 +4 x + 5­ 1 + 1 difference of  1 squares = ∫ (x + 2) 2 + 1 dx Antidifferentiate  into arctan and  = arctan(x+2) + C substitute x+2  back in
  22. 22. Evaluate the given integral. Hint: let x = sin θ 1 ∫ √1 ­ x 2 dx 0 x LET x = sin θ dx = cos θ of  θ when x = 0 , θ = 0 x = 1 , θ =  π 2 π 2

×