Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Konyushkova

526 views

Published on

  • Be the first to comment

  • Be the first to like this

Konyushkova

  1. 1. Introduction System overview SciNet backend ResultsTowards Exploratory Search of Scientific Information Ksenia Konyushkova Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  2. 2. Introduction System overview SciNet backend ResultsTable of contents 1 Introduction 2 System overview 3 SciNet backend Retrieval Keyword Exploration Document Exploration 4 Results Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  3. 3. Introduction System overview SciNet backend ResultsHelsinki Institute for Information Technology andUniversity of Helsinki, Department of Computer Science Directing Exploratory Search: Reinforcement Learning from User Interactions with Keywords Dorota Glowacka Tuukka Ruotsalo Ksenia Konyushkova Kumaripaba Athukorala Samuel Kaski Giulio Jacucci Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  4. 4. Introduction System overview SciNet backend ResultsIntroduction Goal of the system: Support exploratory information seeking behavior of researchers by offering tools to assist in navigating through complex information spaces Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  5. 5. Introduction System overview SciNet backend ResultsIntroduction Goal of the system: Support exploratory information seeking behavior of researchers by offering tools to assist in navigating through complex information spaces Techniques: Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  6. 6. Introduction System overview SciNet backend ResultsIntroduction Goal of the system: Support exploratory information seeking behavior of researchers by offering tools to assist in navigating through complex information spaces Techniques: Reinforcement Learning Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  7. 7. Introduction System overview SciNet backend ResultsIntroduction Goal of the system: Support exploratory information seeking behavior of researchers by offering tools to assist in navigating through complex information spaces Techniques: Reinforcement Learning Optimized Visualization Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  8. 8. Introduction System overview SciNet backend ResultsSciNet: System Interface Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  9. 9. Introduction System overview SciNet backend ResultsDataflow Figure: Overview of data flow in the exploratory search system Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  10. 10. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsRetrieving and Ranking Documents Probabilistic multinomial unigram language model Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  11. 11. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsRetrieving and Ranking Documents Probabilistic multinomial unigram language model MLE: i ˆ P(k|Mdj ) = ˆ ˆ wi Pmle (ki |Mdj ), ki ∈k Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  12. 12. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsRetrieving and Ranking Documents Probabilistic multinomial unigram language model MLE: i ˆ P(k|Mdj ) = ˆ ˆ wi Pmle (ki |Mdj ), ki ∈k Bayesian Dirichlet smoothing: c(k; dj ) + µp(k|C ) Pµ (k|dj ) = , k c(k; dj ) + µ Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  13. 13. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  14. 14. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  15. 15. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Unsupervised Learning Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  16. 16. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Unsupervised Learning Reinforcement Learning Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  17. 17. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Unsupervised Learning Reinforcement Learning Reinforcement Learning: Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  18. 18. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Unsupervised Learning Reinforcement Learning Reinforcement Learning: agents take actions in the environment to maximize the reward Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  19. 19. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Unsupervised Learning Reinforcement Learning Reinforcement Learning: agents take actions in the environment to maximize the reward Exploration-Exploitation paradigm Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  20. 20. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsReinforcement Learning Machine Learning: Supervised Learning Unsupervised Learning Reinforcement Learning Reinforcement Learning: agents take actions in the environment to maximize the reward Exploration-Exploitation paradigm Milti-armed bandit problem: greedy, epsilon-greedy, UCB-1, UCB-tuned and so on Figure: Multi-armed bandits (Microsoft research) Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  21. 21. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsKeyword Exploration (query drift) Learning to rank: initial document retrieval returns 300 documents Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  22. 22. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsKeyword Exploration (query drift) Learning to rank: initial document retrieval returns 300 documents Receive feedback from the user Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  23. 23. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsKeyword Exploration (query drift) Learning to rank: initial document retrieval returns 300 documents Receive feedback from the user Keywords representation - tfidf Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  24. 24. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsKeyword Exploration (query drift) Learning to rank: initial document retrieval returns 300 documents Receive feedback from the user Keywords representation - tfidf Exploration - LinRel (Auer, 2002) Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  25. 25. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsLinRel LinRel algorithm (Auer, 2002): Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  26. 26. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsLinRel LinRel algorithm (Auer, 2002): estimate weight vector w by solving a linear regression ˆ r =X ·w Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  27. 27. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsLinRel LinRel algorithm (Auer, 2002): estimate weight vector w by solving a linear regression ˆ r =X ·w calculate estimated relevance score ri = xi · w ˆ ˆ Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  28. 28. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsLinRel LinRel algorithm (Auer, 2002): estimate weight vector w by solving a linear regression ˆ r =X ·w calculate estimated relevance score ri = xi · w ˆ ˆ calculate upper confidence bound: ri + γσi Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  29. 29. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsLinRel LinRel algorithm (Auer, 2002): estimate weight vector w by solving a linear regression ˆ r =X ·w calculate estimated relevance score ri = xi · w ˆ ˆ calculate upper confidence bound: ri + γσi choose keywords with highest upper confidence bound Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  30. 30. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsGP UCB Gaussian Process Bandits Present to the user the object that maximizes argmax{µi + β · σi }, Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  31. 31. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsGP UCB Gaussian Process Bandits Present to the user the object that maximizes argmax{µi + β · σi }, where µ = K∗ K −1 r , Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  32. 32. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsGP UCB Gaussian Process Bandits Present to the user the object that maximizes argmax{µi + β · σi }, where µ = K∗ K −1 r , σ = K∗∗ − K∗ K −1 K∗ . T Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  33. 33. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsGP SOM Hierarchical Gaussian Process Bandits with Self-Organizing Maps Figure: ImSe interface Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  34. 34. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsDocument Exploration (diversity) Assumption: relevance of a keyword - relevance of all the documents containing this keyword Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  35. 35. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsDocument Exploration (diversity) Assumption: relevance of a keyword - relevance of all the documents containing this keyword α - success measure, β - failure measure Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  36. 36. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsDocument Exploration (diversity) Assumption: relevance of a keyword - relevance of all the documents containing this keyword α - success measure, β - failure measure Thompson sampling for Bernoulli bandit with Beta distribution (Thompson, 1933; Chapelle, Li, 2011): each document is bandit arm with a Beta distribution - Beta(α, β), Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  37. 37. Introduction Retrieval System overview Keyword Exploration SciNet backend Document Exploration ResultsIntent Modeling Figure: Illustration of intent modeling Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  38. 38. Introduction System overview SciNet backend ResultsUser studies ”You are writing an essay describing the field of ”robotics”. This essay should include at least three subfields of ”robotics”, three application areas of ”robotics” and three algorithms commonly used in the field of ”robotics”.” Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  39. 39. Introduction System overview SciNet backend ResultsPrecision results Figure: Illustration of precision measure of Baseline and SciNet in terms of relevance, novelty and obviousness Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  40. 40. Introduction System overview SciNet backend ResultsRecall results Figure: Illustration of recall measure of Baseline and SciNet in terms of relevance, novelty and obviousness Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  41. 41. Introduction System overview SciNet backend ResultsF-measure results Figure: Illustration of F-measure measure of Baseline and SciNet in terms of relevance, novelty and obviousness Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  42. 42. Introduction System overview SciNet backend ResultsKeywords results Figure: Cumulative amount of shown and manipulated keywords in SciNet system Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  43. 43. Introduction System overview SciNet backend ResultsConclusions Interactive information retrieval system Reinforcement Learning Radar Layout Performance in Precision, Recall and F-measure in terms of Relevance, Novelty and Obviousness Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  44. 44. Introduction System overview SciNet backend ResultsAcknowledgments The data used in the experiments is derived from the Web of Science prepared by THOMSON REUTERS, Inc., Philadelphia, Pennsylvania, USA: Copyright THOMSON REUTERS, 2011. All rights reserved; the Digital Library of the Association of Computing Machinery (ACM); the Digital Library of Institute of Electrical and Electronics Engineers (IEEE), and the Digital Library of Springer. The work has been partly supported by the Academy of Finland under the Finnish Center of Excellence in Computational Inference Research (COIN), by the Finnish Funding Agency for Technology and Innovation under project D2I, and by the IST Programme of the European Community under the PASCAL Network of Excellence. Ksenia Konyushkova Towards Exploratory Search of Scientific Information
  45. 45. Introduction System overview SciNet backend ResultsThanks for your attention! Ksenia Konyushkova Towards Exploratory Search of Scientific Information

×