肝臓のセグメンテーション
Qi Dou, Lequan Yu, Hao Chen, Yueming Jin, Xin Yang, Jing Qin, Pheng Ann Heng. "3D Deeply Supervised Network
for Automated Segmentation of Volumetric Medical Images" Medical Image Analysis (MedIA), 2017. (The journal
version of MICCAI paper)
https://github.com/yulequan/
https://www.sciencedirect.com/science/article/pii/S1361841517300725
頸部癌の放射線治療ターゲットの腫瘍領域の
輪郭決定にAuto-Encoderを使用
Comparison between predicted ground-truth clinical target volume
(CTV1) (blue) and physician manual contours (red) for four
oropharyngeal cancer patients. The primary and nodal gross tumor
volume is included (green). From left to right, we illustrate a case
from each site and nodal status (base of tongue node-negative,
tonsil node-negative, base of tongue node-positive, and tonsil
node-positive).
Credit: Carlos E. Cardenas, MD Anderson Cancer Center
Carlos E. Cardenas, Rachel E. McCarroll, Laurence E. Court, Baher
A. Elgohari, Hesham Elhalawani, Clifton D. Fuller, Mona J. Kamal,
Mohamed A.M. Meheissen, Abdallah S.R. Mohamed, Arvind Rao,
Bowman Williams, Andrew Wong, Jinzhong Yang, Michalis
Aristophanous. Deep Learning Algorithm for Auto-Delineation of
High-Risk Oropharyngeal Clinical Target Volumes With Built-In
Dice Similarity Coefficient Parameter Optimization Function.
https://www.ncbi.nlm.nih.gov/pubmed/29559291
https://www.sciencedaily.com/releases/2018/05/180509104936.ht
m