
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on September 24, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
В этом докладе мы обсудим базовые алгоритмы и области применения Machine Learning (ML), затем рассмотрим практический пример построения системы классификации результатов измерения производительности, получаемых в Unity с помощью внутренней системы Performance Test Framework, для поиска регрессий производительности или нестабильных тестов. Также попробуем разобраться в критериях, по которым можно оценивать производительность алгоритмов ML и способы их отладки.
Be the first to like this