SlideShare a Scribd company logo
1 of 64
Download to read offline
Genome-wide Association Studies
          in Cancer:
 A Step in the Right Direction

        Stephen Chanock, M.D.


 Chief, Laboratory of Translational Genomics
      Director, Core Genotyping Facility

               June 20, 2012
Genetic Predisposition to Breast Cancer
                                                       European Population
                                    10      BRCA1
                                            BRCA2
Population genotype relative risk

                                          TP53
                                             PTEN
                                               CHEK2
                                    3        ATM
                                           PALB2
                                              BRIP1
                                              RAD51C
                                              ERCC2
                                    1.5

                                    1.4

                                    1.3

                                    1.2
                                                                                    > Doubling in
                                                                                    2012
                                    1.1

                                    1
                                          0   0.1    0.2    0.3   0.4     0.5     0.6   0.7     0.8   0.9   1

                                                    Population risk-allele frequency

                                                     BCAC    CGEMS/BCAC         WTCCC   Other
97 Genes Mutated in Cancer Susceptibility Syndromes
 SDHB
 MUTYH

         ALK       FANCD2
         MSH2
         MSH6      VHL
                   XPC                                                                        HRAS
         FANCL     MLH1                                   PMS2                                FANCF
                   BAP1                  TERT     FANCE   EGFR             CDKN2              WT1
                   MITF                                                    FANCG
                                                                           A
                                         SDHA                                                 DDB2
                            PHOXB2                POLH                                        EXT2
                                                                  WRN


         TMEM127                                                                                        CDK4
                   GATA2                                  SBDS
                                                                  NBS1     GALNT1             SDHAF2    PTPN11
 HAX1                                                                      XPA
                                                                           2        RET       MEN1
 SDHC    ERCC3     TERC                                                    PTCH     BMPR1     ATM
                                                          MET                       PTEN
                                                                                    A         SDHD
         DIS3L2             KIT                                            FANCC    SUFO      CBL
 HRPT2                                                                     TSC1
                            PDGFRA       APC
                                                                  EXT1
                                                                  RECQL4
                                                  T


 FH




                                                                                              FANCB

                            SLX4
                            TSC2         TP53             ELANE
                            ERCC4        WRAP53           STK11
                            FANCN/BRIP   FLCN
                            1
         TINF2                                            CEBPA
                                         NF1                               RUNX1    SMARCB1
 BRCA2   FANCM                                            ERCC2                     CHEK2
                                         BRCA1
 RB1                        CYLD         FANCJ    SMAD4                             NF2
         MAX       BUB1B    CDH1         RAD51C
                   FANCI    FANCA        HOXB13
                   BLM
         DICER1
 ERCC5                                                                                        GPC3

                                                                                              DKC1
                                                                                                       C Kratz
Genome-Wide Association Studies:
          Age of Discovery
• Discovery of New Regions in the Genome Associated
  with Diseases/Traits
  •   New “Candidate Genes & Regions”
• Clues for Mechanistic Insights Into the Contribution of
  Common Genetic Variation to Cancer Biology
• Challenge of Genetic Markers for Risk Prediction
  •   Individual Risk
  •   Public Health Decisions
  •   Polygenic Risk Models
Published Cancer GWAS Etiology Hits: 5.15.12
   KIF1B
    1p36
                                                                                         ~240 Disease Loci marked by SNPs
                  DDX1
                                                                               IRF4
                                                                               6p22
                                                                                         1 Locus marked by a CNV
                                 SLC4A7/
                  C2orf43         NEK10                                        6p21

                  THADA
                                  ITGA9
                                                   TACC3        TERT/
                                                                              GPRC6A
                                                                               FOXP4
                                                                                          Another 85 coming soon…         DMRT1         10p15.1
                                                                                                                                                   LSP1
                                                                                                                                                   11p15
                                                                TERT
                                                               CLPTM1L                                                                            DLG2
  GSTM1
                  EHBP1                                        CLPTM1L        GABBR1      breast, bladder, kidney, lung,10p14
                                                                                              JAZF1
                                                                                                      NAT2
                                                                                                              CDKN2A/
                                                                                                                          BNC2
                                                                                                                                                   LMO1           12p11.23
  deletion          REL          3p12.1                                        HLA-F
   1p11.2                         3p11.2
                                                                 5p15
                                                                               HLA-A
                                                                                          ovary, prostate, TCGT
                                                                                            IKZF1     8p21    CDKN2B   GATA3
                                                                                                                       MSMB/
                                                                                                                                                    ATM          ATF7IP
                                                                 5p12                         EGFR
                                                                               6p21.33                                                   NCOA4    FAM111A
    1q22           2q13                                         5q11.2                                                                             11q13          KRT5
                                                                                                                                        ARIDB5
                                  3q13                                         6p21.32
   1q21.1                                          PDLIM5        5q11                                                                             HSD17B12
                                 EEFSEC                                         BAK1         LMTK2                                       PLCE1
                  EPAS1                            ADH1B          5q13                                                                               TYR          KITLG
   1q21.3                                                                                                                 FOXE1
                                                    TET2         DDX4         ECHDC1/                                                   ZNF365     11q23.1       12q13.13
   1q32.1          ITGA6                                                       RNF146                       EIF3H         9q31.2         FGFR2     PHLDB1
                                   3q26                                       C6orf97/        7q32                                                                ALDH2
                                                                SPRY4                                     8q24.21(x5)
                                                                                                             MYC
                                                                                                           CCDC26
                                                                                                            8q24.21        ABO           CTBP2     11q24.1
  TARDBP            2q31                                                        ESR1          7q32
                                   TP63                                       SLC22A3                       PSCA                        10q21.2
    1q41           CASP8
                                                                                                                                       ERG2
    1q42          BARD1                                                      LINC00340
                                                                                                                                        10q22.3
  1q42.12          2q35                                                                                                                  10q26
                  FARP2
                    2q37




                                                                                             19p13        C20orf54
                                                                                             RHPN2          BMP2
                                                                                                                                                   NUDT10/
                                                                                             CCNE1
                                15q15                                                                                                  22q12.25    NUDT11
                  CEBPE                                        HNF1B x 2      SLC14A1                       ASIP          MX2
                                                                                            19q13.2                                     22q13
                 NKX2-1          GREM1              TOX3
                                                               COX11/          SMAD7         PRKD2
                                 15q21.3                                                                                  21q22           BIK
                  BMP4                             CDH1        STXBP4                                      RTEL1
                                                                                             KLK2/
                                 15q23             16q24.1     17q24.3                       KLK3
   KLF5/         RAD51L1
   KLF12                        CHRNA3/            MC1R                                                                                             3 Ewing Sarcoma
                                                                 3 Kidney        4 Thyroid 2 Non-Hodgkin 5 Ovary 3 Gastric    9    Multiple
                                CHRNA5
 13q12.125
                                                                                                                                                    3 Hodgkins
   13q22        2 Wilms     1 Liver       10 CLL     6 Neuroblastoma       4 Pediatric Acute Lymphoblastic Leukemia     7 Esophageal Squamous

48 Prostateate 26* Breast   13 Colorectal 7 Basal Cell Carcinoma11* Bladde7 Glioma 6 Lung 9 Melanoma 4 Pancreas 7 Nasopharyngeal 6 Testicular
                                                                          7                                                                       Chung & Chanock 2011
Lessons from GWAS Discovery
• P values matter- to protect against a sea of
  false positives
• Size matters
• Design “sort of” matters…….
• Mapping is required to explore each region
  prior to functional work
• Collaboration is central
  Epidemiology meets Genetics to Discover Biology

    Not for weak of heart or stomach…
Lessons from GWAS Discovery
• P values matter- to protect against a sea of
  false positives
• Size matters
• Design “sort of” matters…….
• Mapping is required to explore each region
  prior to functional work
• Collaboration is central- Can’t do it alone


    Not for weak of heart or stomach…
CGF & Data Sharing

• Posted first public GWAS datasets for breast & prostate cancer
  in 2006
   • Aggregate data removed in 2008 in response to NIH policy
      change
• Led development of standards for GWAS posting with dbGaP
• Contributed all DCEG GWAS datasets to dbGaP
• CGF was instrumental in addressing privacy issues with GWAS
  and other high-dimensional aggregate genomics data
• 11 scans currently listed on dbGaP
GWAS Regions for Testicular Cancer Point
      Towards Alterations in a Common Pathway




High Estimate for Heritability
      Strong Familial Component
             MZ Twins= 75 X
             DZ Twins= 20-25 X
Strongest Effects Observed in GWAS
      KITLG Heterozygote OR= 2.5, Homozygote > 5.0
GWAS Studies:
           Just the Start……


“This is not the end. It is not even the
  beginning of the end. But it is,
  perhaps, the end of the beginning.”

    Sir Winston Churchill @ Lord Mayor's Luncheon,
    Mansion House following the victory at El Alameinin North Africa
    London, 10 November 1942.
Prostate Cancer Risk Factors
                    2006

• Age
• Ethnic Background
• Family History
Prostate Cancer: 48 as of May 1, 2012
                                 > 24 More to come
           2p24.1
           THADA
           EHBP1
                              No Clear Evidence of Specific Loci
                                       5p15.33
                                                  RFX6
                                                            JAZF1
                                                                                                 11p15

                                                 FOXP4
                                                                                                 3
                     3p12.1

                      3p11
                              For Advanced Disease                   8p21
                                                                                     MSMB/      FAM111A
                                                                                     NCOA4
                                                                                                 11q13
                                                                                     10q11.23             12q13
                              PDLIM5
                     EEFSEC                                 LMTK2

                              TET2

            ITGA6                                                    8q24.21         CTBP2
                                                 SLC22A3               5              10q26




            2q27.3            Suggests Distinct Regions Influence
                              Etiology & Outcome

                                                                                                NUDT10/
                                                                                                NUDT11
                                       HNF1B               19q13.2
                                         2                                            BIK
                                                           KLK2/
13q22.1                                17q24.3             KLK3




                     Type 2 Diabetes              PSA or Prostate Cancer or both??
Prostate Cancer Risk Factors
                 2012
• Age
• Ethnic background
• Family history
• Multiple common alleles-
   48 published & more coming….
   Each common variant explains a small
    proportion of risk
   Together 15%
Prediction is difficult,
Especially about the future.
         Yogi Berra
         Dan Quayle
         Niels Bohr
Discriminatory Power of Genetic Risk
      Score for Prostate Cancer
                      Area Under the ROC
                            Curve
                      Model            Under          Over
                                        65             75
                      FHx only           0.55          0.51
                      G only             0.66          0.60
                      G + FHx            0.68          0.60
                      PSA                0.87          0.84




                         P Kraft, S Lindstrom for the BPC3
Theoretical Limits of Risk Prediction
         Crohn’s Disease                     Common cancers (Br or Pr)
   Sibling relative-risk=20-35               Sibling relative risk=2-3




                                                                Park et al., Nat Genet ,2010
   Different Diseases Display Distinct Architectures
                           Random
                           Using known loci
                           Using all estimated loci
                           Ideal (if we could explain all heritability)
                                                                          Park et al Nature Genetics 2010
Next Generation GWAS
• Distinct Populations
  – Prostate Cancer in Japan or in African Americans
  – Esophageal Cancer in China
• Meta-Analysis Yield Discoveries
  – Larger Scans
  – Large Scale Replication (iCOGS)
• Shift to lower MAF
  – New Arrays vs Low-Pass Sequence Coverage
  – Imputation
     • Better for Mapping Regions
  – Larger Sample Sizes Required
Distinct Differences in the
    Underlying Genetic Architecture of
            Different Cancers
Preliminary Phase of Estimating Differential
  Contribution
     Common Variants
        Log additive Effects
        oEpistatic Effects
     oUncommon Variants
     oRare/Familial Mutations
Genetic Predisposition to Breast Cancer
                                                       European Population
                                    10      BRCA1
                                            BRCA2
Population genotype relative risk

                                          TP53
                                             PTEN
                                               CHEK2
                                    3        ATM
                                           PALB2
                                              BRIP1
                                              RAD51C
                                              ERCC2
                                    1.5

                                    1.4

                                    1.3

                                    1.2
                                                                                    > Doubling in
                                                                                    2012
                                    1.1

                                    1
                                          0   0.1    0.2    0.3   0.4     0.5     0.6   0.7     0.8   0.9   1

                                                    Population risk-allele frequency

                                                     BCAC    CGEMS/BCAC         WTCCC   Other
Genomic Architecture of Prostate Cancer
                                          Susceptibility Loci:
                                    BRCA2
                            5




                            3       ????
Per allele relative risk




                           1.4



                           1.2


                            1
                                 0 0.05             0.50            0.95 1
                                            Risk-allele frequency
Genetic predisposition to neuroblastoma:
                           Current status and future directions
                   100                                                             Discovered mutations
                                  ALK                                              Yet to be discovered mutations
                                                                                   Discovered polymorphisms
                                 PHOX2B
                                            Additional mutations and               Yet to be discovered polymorphisms

                                            rare polymorphisms to be
                             TP53
                                                discovered by NGS
     Effect size




                             SDHB
                                                               Additional polymorphisms
                    10
                                                               to be discovered by GWAS
                            PTPN11

                                                                              FLJ22536

                     5                                                  DDX4             LMO1
                                                                                                    BARD1
                                                                   HSD17B12
                                                              NBPF23                                 NME7

                     1
                         0.001                 0.01                       0.1   DUSP12       0.5
                                                                                      IL31RA
Modified from Manolio, et al. Nature 2009       Allele Frequency
Genomic Architecture of Lung Cancer
                                   Susceptibility Loci
                            5




                            3       ????
Per allele relative risk




                                           Smoking….
                           1.4
                                                       Adenocarcinoma specific
                                                       Stronger in nonsmokers
                           1.2


                            1
                                 0 0.05             0.50                     0.95 1
                                            Risk-allele frequency
Investigation of GWAS Markers
                                               Non-
                                                                           Coding
Initial Findings                              Protein
                                                                           Variant
                                              Coding




Bioinformatic                   Regulatory                   Unannotated              Effect on
                                 Element                      Transcript               Protein
Analysis




                Alteration of                   Effect on
Functional                                                     Novel           mRNA           Allelic
                Gene Levels     Epigenetic        Genes
Elements                                                     Transcripts       Stability    Differences
                                                Elsewhere




                                              Expression                    Expression        Gene
                 Functional       Histone
Experimental     Elements       Methylation
                                              Quantitative     miRNA        Quantitative     Product
Strategy                                         Trait         RNASeq          Trait        Functional
                In vitro/vivo    Elements
                                               Analysis                      Analysis        Analysis
10q11.2 & Prostate Cancer
                      Risk
       rs10993994 within promoter of
           MSMB= b-microseminoprotein
           Prostate specific serum marker under study

20,000 subjects
                                  Functional Analysis
                          Risk Allele “T”
                          Lower expression levels
                           Reporter assays
                           Electrophoretic Mobility Shifts
                           Levels in Prostate Tissue
                           Tumor Tissue
10q11.2 Could Be More Complex……
            MSMB and NCOA4

                                            Re-sequence
                                            454 FLX
                                            ~100 subjects




RNA Expression MSMB and NCOA4
Normal
Tumor Tissue
Anchorage Independent Growth is Specific to Prostate
MSMB- Suppression
NCOA4- Over-expression
Characterization of Chimeric Transcript at 10q11.23
MSMB-NCOA4 Fusion

   RT-PCR of MSMB-NCOA4 fusion transcripts
   in human tissues and 9 prostate cancer cell lines

   Expression of MSMB-NCOA4 fusion protein in PC3 transfected cells organization of
                                                            Genomic
                                                                MSMB and NCOA4
   Confirmed by                                                Predicted fusion transcripts
                                                               (UCSC)
           Western Blot
           Immunoprecipitation
           anti-N (MSMB) & anti-C (NCOA4)



                                                                 Fusion transcripts
                                                                 identified by 5’
                                                                 RACE



                                                   Lou et al in press Hum Genet 2012
11q13: Multi-Cancer Susceptibility Region
Discovery by GWAS & Mapping
CGEMS (Thomas NG 2008)
                                       GWAS
   1-> 3 Loci (Chung et al HMG 2011)




                                              Australia/
                                              iCOGS Analysis
                                              J French
Admixture Analysis of                          Native
                                Asian    African   American       European
    GWAS Data:
    Use of Differences in
    Allele Frequencies to
    Map Regions that
    Contribute to
    Differences in                      STRUCTURE
    Incidence

Population Structure Analysis
Can 1000s of SNPs assist in
Identifying Individuals at
   Higher Risk for Poor
Response to Pediatric ALL?

•    GWAS Scan as a
     Preliminary Biomarker




                                                     JJ Yang et al Nature Genetics 2011
Association testing



                      Genome-wide
                    association studies

Behavioral traits       Biometrics         Nutrient levels




 Tobacco            Height, Weight, BMI,    Vitamins D, B12
 Caffeine           Menarche/Menopause      Carotene
 Alcohol
              >200 regions & Height/Weight
Loci Associated with BMI
 Rethinking “Pathways”




                 Opportunities for:
                 1. Pathway Analyses
                 2. Polygenic Model
                      GIANT CONSORTIUM
Unexpected Findings
     Genetic Mosaicism
     & the Aging Genome
              Genome-wide
              association studies
Large chromosomal abnormalities, structural
   variation, aneuploidy in germline DNA




                                    Rodriguez-Santiago AJHG 2010
                                    Jacobs et al Nature Genetics 2012
                                    Laurie et al Nature Genetics 2012
Looking at LRR/BAF graphs
                                                                                          B-allele
                                                                                          Homozygous



                                σLRR=0.24 σBAF=0.044


                                                                                          Heterozygous




                                                                                          A-allele
                                                                                          Homozygous



LRR – log ratio of observed probe intensity to expected intensity
   – Significant deviation from zero is evidence for copy number change



BAF – B allele frequency – ratio of B probe intensity to total intensity
   - Expected values for diploid loci are 0, ½ and 1. Other values can indicate allelic
      imbalance and suggest copy number changes or mosaicism.
Definition of Genetic Mosaicism
Co-existence of distinct subpopulations of
  cells regardless of the clonal or
  developmental origin
Presence of large structural genomic events
  (> 2 Mb)
Resulting in alteration of
  • Copy number (gain or loss)
  • Loss of heterozygosity
Mosaicism in the Extreme
• Age-old explanation for developmental disorders
  and catastrophic diseases (NF)
  • Trisomy 21, Turners (XO)
• Rare, Highly Penetrant Mutations lead to
  Variegated Aneuploidy
  • BUB1B
  • CEP57
• Complex Syndromes
  • Proteus Syndrome & AKT1 (NEJM 2011)
  • Ollier Disease & IDH1/IDH2 (Nature Genetics 2011)
  • HRAS- Skin/Cancer (NEJM 2011)
Validation for 42 Events Observed
                              100%




1.7% Overall
No Association with Bladder Cancer Risk
                                     Rodríguez-Santiago et al. Am J Hum Genet. 2010;87:129-38
Genetic Mosaicism of the Autosomes
• Analysis of 13 GWAS                      57,853
   • Cancer cases                          31,717
   • Cancer-free controls                  26,136

•   Mosaic events detected                   681
•   Autosomal chromosomes                    641
•   Individuals                              517
•   Individuals with multiple events          69



                                       Jacobs et. al. Nature Genetics 2012
Genetic Mosaic Events
                             0.4

                             0.3        gain
                                        neutral LOH
                             0.2
                                        loss
                             0.1
log2 intensity ratio (LRR)




                               0

                             -0.1

                             -0.2

                             -0.3

                             -0.4

                             -0.5

                             -0.6
                                    0      0.1        0.2   0.3        0.4      0.5      0.6         0.7   0.8   0.9   1
                                                                  Proportion of abnormal cells (p)
Age at DNA Collection is the Strongest
      3.0%



      2.5% Predictor of Genetic Mosaicism
            2.0%
Frequency




            1.5%



            1.0%



            0.5%



            0.0%
                   <45   45‐49   50‐54         55‐59          60‐64          65‐69          70‐74         75‐
                                               Age at DNA collection

                                         Cancer Free    Cancer DX




                                                                    Jacobs et. al. Nature Genetics 2012
Higher Frequency in Men
     Compared to Women

              Females   Males
Cancer Free     0.56%    0.87%
Cancer          0.79%    1.21%
Overall         0.65%    1.04%
Frequency of Mosaic Events by Type & Location



                    Mosaic Chromosome Count     Mosaic Chromosome Frequency (%)
Event Location gain loss cnloh mixed Total      gain    loss cnloh mixed Total
chromosome         62    11    42    5 120       9.7     1.7  6.6    0.8  18.7
telomeric P        11    13 114      1 139       1.7     2.0 17.8    0.2  21.7
telomeric Q         9    10 149      0 168       1.4     1.6 23.2    0.0  26.2
interstitial       14 185       2    1 202       2.2   28.9   0.3    0.2  31.5
span centromere     1     1     2    0      4    0.2     0.2  0.3    0.0    0.6
complex             0     3     0    5      8    0.0     0.5  0.0    0.8    1.2
             Total 97 223 309       12 641      15.1   34.8  48.2    1.9
Number of chromosomes with mosaic events
• 69 individuals have two or more events
   – 46 cancer cases
   – 23 cancer-free

      Count of             cancer
       mosaic      Likely   Possibly           cancer-   Cancer
   chromosomes   Untreated   Treated   Total     free    type(s)
         1          166        111      277      171
         2           15         13       28       18
         3            7          0        7        3
         4            3          0        3        1
         5            0          2        2        1
         6            0          1        1        0    prostate
         7            1          0        1        0   CLL & ovary
        11            0          1        1        0     gastric
        16            1          0        1        0       lung
       20              0       2        2        0       gastric
Circos Plot of mosaic events in 57,583
       individuals (681 events)




                         0.4

                         0.3   neutral LOH
                         0.2
                               gain
                         0.1
                               loss
             tio (LRR)




                          0
Adjusted analysis of association between
                mosaicism & cancer
                                All cancer cases                Likely Untreated             Possibly Treated
Site of first cancer     OR        95% CI     p value    OR        95% CI     p value    OR     95% CI p value
non-hematologic cancer   1.27    (1.05-1.52)     0.012   1.45    (1.18-1.80) 5.4E-04     1.03 (0.81-1.30) 0.804
  bladder                1.30    (0.90-1.89)     0.164   1.50    (1.01-2.23)     0.043   0.73 (0.32-1.68) 0.455
  breast                 0.72    (0.41-1.27)     0.256   0.49    (0.18-1.32)     0.159   0.90 (0.46-1.79) 0.770
  endometrium            1.27    (0.64-2.50)     0.494   1.35    (0.42-4.30)     0.611   1.24 (0.54-2.82) 0.610
  esophagus              0.86    (0.34-2.18)     0.751   3.51   (0.45-27.58)     0.232   0.76 (0.29-2.03) 0.590
  glioma                 0.88    (0.45-1.74)     0.717   0.95    (0.44-2.05)     0.892   0.70 (0.17-2.86) 0.622
  kidney                 1.98    (1.27-3.06) 2.3E-03     2.32    (1.46-3.69) 3.6E-04     0.95 (0.30-3.03) 0.931
  lung                   1.56    (1.18-2.08) 2.0E-03     1.69    (1.23-2.33) 1.3E-03     1.27 (0.81-1.96) 0.295
  osteosarcoma           1.34    (0.39-4.59)     0.637                                   1.34 (0.39-4.59) 0.637
  ovary                  1.18    (0.48-2.93)     0.718   1.09    (0.27-4.47)    0.903    1.27 (0.40-4.04) 0.690
  pancreas               0.89    (0.60-1.33)     0.574   0.55    (0.14-2.24)    0.406    0.93 (0.62-1.41) 0.735
  prostate               1.14    (0.79-1.64)     0.485   1.28    (0.85-1.92)    0.243    0.92 (0.51-1.66) 0.781
  stomach                1.43    (0.68-3.03)     0.345   3.35   (0.74-15.13)    0.116    1.32 (0.61-2.88) 0.481
  testis                 3.29   (0.59-18.46)     0.176   3.29   (0.59-18.46)    0.176
  other sites            1.49    (0.55-4.05)     0.438                                   1.49 (0.55-4.05)   0.438
Hematological Cancers and “Mosaicism”
         A Tale of Two Studies
NCI Study (Jacobs et al 2012)   GENEVA (Laurie et al 2012)
43 Hematological cancers        Subanalysis in 4 cohorts for
Higher frequency                Heme cancers
       15.8% Myeloid            Hazard ratio estimate for mosaic
       26.3% CLL                status =10.1 (95% CI=5.8 - 17.7)
Untreated leukemia vs.                  p=3 x 10-10
cancer-free controls
OR=35.4 (14.7-76.6 95% CI)
       p=3.8×10-11



   Jacobs et al., 2012                       Laurie et. al., 2012
Chromosome Y Mosaic Aneuploidy
      Pre-Correction                      Post-Correction




Example of whole chromosome loss in ~60% of cells
  •   Uncorrected appears to be segmental loss
  •   Corrected results are clearly whole chromosome loss
SRY
RPS4Y1
ZFY
           qPCR Assay Panel for chrY loss
           • 15 probes designed to determine copy
AMELY
TBL1Y
PRKY

             number of single-copy genes relative
             to RNaseP
USP9Y
           • Coverage across p- and q-arms
DDX3Y
UTY
TMSB4Y
NLGN4Y

CYorf15A
CYorf15B
KDM5D
EIF1AY
Calling whole chromosome Y-loss from Infinium GWAS
                                                         data calibrated using qPCR Ratios for 15 Regions
                                        1.40

                                                                                                                 y = 0.8599x + 0.132
                                                                                                                     R² = 0.8121
Uncalibrated Y-loss from Infinium LRR




                                        1.20



                                        1.00

                                                                                                                         Possible
                                        0.80                                                                               Gain
                                                                                                             No Loss

                                        0.60
                                                                                                      Undetermined

                                        0.40
                                                                                            Probable Loss

                                        0.20



                                        0.00
                                               0.00       0.20    0.40         0.60       0.80        1.00       1.20            1.40
                                                                         Y-loss from 15 qPCR Probes
The Aging Genome:
 Implications for Cancer Studies
• Importance of thorough characterization of
  ‘germline’ DNA in parallel with somatic analyses
• Insights into Genomic Instability
  Early vs. Late Events
• Genetic biomarkers for early detection of
  hematological cancers
Two Hypotheses for
      Mosaicism in the Aging Genome
         Early Event                          Late Event
Embryonic Progenitors with Somatic   Increase in Somatic Alterations with
  Alterations Are Below Threshold       Age
  of Detection                                    PLUS
Unknown Events Trigger Survival      Decreased Genomic Stability due to
  Bottleneck                            Telomere Attrition

            LEADS TO                          LEADS TO
                                     Proliferation of Suppressed
Positive Selection with Rapid           Populations of Somatically
   Expansion of Second Clonal           Altered Clones
   Population                        Decreased Cellular Diversity with
                                        Aging and Cell Populations
                                        Become Increasingly Oligoclonal


             Co-existence of Distinct Clonal Populations
Using Population Studies to Gain Biological
     Insights into Genetic Mosaicism:
• Map breakpoint sites (Mitelman/ENCODE)
• Analyze paired tumors in identified studies
• Investigate timing and dynamics (serial samples)
• Proportions & cell type
   • Blood Bank Study at NIH
   • Australian Twin Registry (2000)
• Confirm Non-hematological Association
   • New lung/kidney studies
• Sex Chromosomes
   • Y chromosome in TGS
   • X has challenge of Lyonization
Detectable Genetic Mosaicism &
     Hematological Cancers
• PLCO heme cancers (> 700)
  • Serial samples for ~25%
• NHL GWAS
  • 9000 Cases (5 subtypes)
• Aplastic Anemia (NHLBI- N Young)
  • 20% MDS/Leukemia
• CLL/Waldenstrom families (GEB)
  • MBL/MGUS serial samples
• CLL Study (L Staudt)
Milestones at the Core Genotyping Facility
    2001 2002 2004 2006 2008 2010 2012 2014 & beyond




                                                              Whole Genome
Candidate SNP                                                 Sequencing
Functional Data                       Genome Wide
                                      Association
                                                                        Population-based
                                      Studies            Exome
      Candidate Genes                                                   Sequencing
                                                         Sequencing
      Biological Plausibility
      Genetic Markers

                      Candidate Pathway
                      Biological Plausibility   Regional Sequencing
                                                GWAS & Linkage
Human Genetics:
         Thresholds and Significance
• Each new technology has brought us to a new ‘crisis’
  Linkage and LOD scores in too few families
  Candidate Gene/SNPS in small studies
  GWAS in insufficiently powered studies
     Required replication/validation
  CNVs and power outages together with unstable calling
    algorithms
  Exome sequencing, oligogenic models with insufficient
    number of families
  Whole genome sequencing and the rising tide of
    ‘uninterpretable’ variants…
Let’s not fool ourselves about
             germline genetics…
• First it is about……..Discovery
    Biology
    Targets
    Possible risk variants
•   Then…………………….Validation
•   Followed by…………Characterization
•   Later…………………….Clinical application
•   Distant future………Targets
               Don’t forget lifestyle/environment…..
Mapping Genetic Architecture
• Comprehensive map will emerge across
  spectrum of variation
  • GWAS               Common Variants
  • Sequencing         Uncommon and Rare Variants
• Search for “Pathways”
  • Moderate penetrance breast cancer genes
• Develop Risk Profiles in Age of Sequencing
  • Can Prevention or Early Detection Improve
    Outcome?
In the not too distant future
• We will look back and think of GWAS as the
                “Golden Age”
• The temptation is to continue to do GWAS
  – Should not be abandoned (esp with imputation)
  – Think bigger in size for comprehensively exploring
    MAF spaces
     • > 10%
     • 1-10%
     • < 1% Can it be done by association testing??
        But the allure of sequencing is at hand…..
Emerging Impact of Population Genetics
   in the Search for ‘Elusive’ Variants
• In GWAS era- we tolerated minor mismatching
  because sample sizes and MAFs are large
• As MAFs fall, challenge of population private
  variants ‘sky-rockets’
  • How do we know if a rare variant in one
    population is non-contributory whereas in a
    second population it influences risk/outcome?
  • Value of functional validation
  • Challenge of Environmental Exposure/Lifestyle
Advances will be accelerated by
“Collective Intelligence”

“I not only use all of the brains
I have, but all I can borrow”

Woodrow Wilson
Acknowledgements

                        NCI-DCEG              HSPH
LTG                     Joseph Fraumeni       David Hunter
Renee Chen              Peggy Tucker          Pete Kraft
Charles Chung           Gilles Thomas         Sara Lindstrom
Jean- Nicolas Cornu     Robert Hoover
Jun Fang                Meredith Yeager       BPC3 & CGEMS
Phoebe Lee              Kevin Jacobs          ACS (M Thun)
Lea Jessop              Sharon Savage         ATBC (D Albanes-DCEG)
Hye Kim                 Nilanjan Chatterjee   CAPS (H Gronberg/J Xu)
Joe Kovacs              Nat Rothman           CeRePP (O Cussenot)
Tim Myers               JuHyun Park           CONOR (L Vatten)
Nilabja Sikdar          Sonja Berndt          EPIC (E Riboli)
                        Sharon Savage         JHU (W Issacs/J Xu)
Strategic Support       Lindsay Morton        MEC (B Henderson)
MJ Horner               Zhaoming Wang         PLCO (R Hayes)
Tammy Bell              NCI-CCR               WHI (R Prentiss)
                        Mike Dean
Investigators           Hong Lou
                                              DFCI
Laufey Amundadottir     Institut Curie        Matt Freedman
Kevin Brown             Olivier Delattre      Mark Pomerantz
Mila Prokunina-Olsson   Carlo Lucchesi
Acknowledgements
                                                                               Glioma
                                                                               Preetha Rajamaran (NCI,) Laura Beane Freeman (NCI), Christine
                                                                               Berg (NCI), Julie Buring, Ulrika Andersson, Mary Butler, Tania
                                                                               Carreon, Maria Feychting, Anders Ahlbomm J Michael Gaziano,
                                                                               Graham Giles, Goran Hallmans, Wei Zheng, Susan E Hankinson,
189 authors from 48 participating studies:                                     Roger Henriksson, Peter D Inskip, Christoffer Johansen
                                                                               Annelie Landgren, Roberta McKean-Cowdin, Dominique
 Kevin Jacobs                                                                  Michaud, Beatrice Melin, Ulrike Peters, Avima Ruder, Howard
                                                 Upper GI                      Sesso, Gianluca Severi, Xiao-Ou Shu, Kala Visvanathan, Emily
 Meredith Yeager                                 Christian Abnett, Alisa       White, Alicja Wolk, Anne Zeleniuch-Jacquotte,
 Margaret Tucker                                 Goldstein, Phil Taylor,       Wei Zheng, Manolis Kogevinas
                                                 Neal Freedman, Linda
 Nathaniel Rothman                               Liao, Ti Ding, You-Lin
 Sholom Wacholder                                Qiao, Yu-Tang Gao,
                                                                                           African-American Lung Cancer Consortium
                                                 Woon-Puay Koh, Yong-
 Luis Perez-Jurado                               Bing Xiang, Ze-Zhong                      Krista Zanetti (NCI), Melinda Aldrich, Chris Amos,
 Joseph Fraumeni                                 Tang, Jin-Hu Fan, Jian-                   William Blot, Cathryn Bock, Elizabeth Gillanders, Curt
                                                 Min Yuan                                  Harris, Chris Haiman, Brian Henderson, Laurence
                                                                                           Kolonel, Loic Le Marchand, Lorna McNeill, Benjamin
                                                                                           Rybicki, Ann Schwartz, Lisa Signorello, Margaret
                                               Breast (CGEMS)                              Spitz, John Wiencke, Margaret Wrensch, Xifeng Wu
 Prostate Cancer (CGEMS)                       David Hunter
 Robert Hoover, Gilles Thomas,                 Peter Kraft
 Sonja Berndt, Weiyin Zhou, Xiang              Louise A Brinton,
                                                                                           Lung
 Deng, Chenwei Liu, Michael Cullen,                                                        Neal Caporaso, Teresa Landi, Lynn Goldin, Dario
                                               Jolanta Lissowska,
 Ann Hsing, Caroline Epstein, Laurie                                                       Consonni, Pier Alberto Bertazzi, Melissa Rotunno
                                               Beata Peplonska
 Burdett, Nilanjan Chatterjee, Joshua          Regina Ziegler
 Sampson, Amanda Black, Michael
                                                                                         PanScan
 Dean, Charles, Chung, Joseph
                                                                                         Patricia Hartge, Laufey Amundadottir, Rachael
 Kovaks, Nan Hu, Kai Yu, MJ Horner
                                                                                         Stolzenberg-Solomon (NCI), Demetrius Albanes (NCI),
                                                    Renal                                Jarmo Virtamo, Zhaoming Wang, Amy Hutchinson, Alan
 American Cancer Society                            Mark Purdue, Wong-
                                                                                         A Arslan, H Bas Bueno-de-Mesquita, Charles Fuchs,
                                                    Ho Chow, Lee E
  Susan Gapstur, Victoria Stevens,                                                       Steven Gallinger, Myron D Gross, Elizabeth Holly, Alison
                                                    Moore, Kendra
       Lauren Teras, Mia Gaudet                                                          Klein, Andrea LaCroix, Margaret Mandelson, Gloria
                                                    Schwartz, Faith Davis
                                                                                         Petersen, Marie-Christine Boutron-Ruault, Paige M
                                                                                         Bracci, Federico Canzian, Kenneth Chang,Michelle
                                                                                         Cottercho, Ed Giovannucci, Michael Goggins, Judith
       Bladder                                                                           Hoffman Bolton, Mazda Jenab, Kay-Tee Khaw, Vittorio
       Montse Garcia-Closas, Debra                                                       Krogh, Robert Kurtz, Robert McWilliams, Julie B
       Silverman, B. Rodriguez-Santiago,          Testis, Ovary &                        Mendelsohn, Kari Rabe Elio Riboli, Anne Tjonneland,
       Nuria Malats,, Francisco Real, Jonine      Endometrium                            Geof Tobias, Dimitrios Trichopoulos, Joanne Elena,
       Figueroa, Ludmila Prokunina-Olsson,        Christian Kratz, Katherine             Herbert Yu, Fredrick Shumacher, Daniel Stram, Lisa
       Dalsu Baris, Gaelle Marenne, Manolis       McGlynn, Mark Greene,                  Mirabello, Juan R Gonzalez, Olaya Villa, Donghui Li, Eric
       Kogevinas, Molly Schwenn, Alison           Michael Cook, Barry                    J Duell, Harvey A Risch, Sara H Olson, Charles
       Johnson                                    Graubard, Ralph Erickson,              Kooperberg, Brian M Wolpin, Li Jiao, Manal Hassan,
                                                  Nicolas Wentzensen                     William Wheeler


                              Osteosarcoma
                              Sharon Savage, Irene Andrulis,
                              Jay Wunder, Ana Patiao-Garcia,
                              Luis Sierrasesumaga, Donald A
                              Barkauskas, Richard Gorlick
61



  Chromosomal mosaicism from birth to
      old age and its relationship to
          hematological cancer
Investigators:
Cathy C. Laurie, Cecelia A. Laurie, Kenneth Rice, Kimberly F. Doheny, Leila R. Zelnick, Caitlin P.
McHugh, Hua Ling, Kurt N. Hetrick, Elizabeth W. Pugh, Chris Amos, Qingyi Wei, Li-e Wang,
Jeffrey E. Lee, Kathleen C. Barnes, Nadia N. Hansel, Rasika Mathias, Denise Daley, Terri H.
Beaty, Alan F. Scott, Ingo Ruczinski, Rob B. Scharpf, Laura J. Bierut, Sarah M. Hartz, Maria Teresa
Landi, Neal D. Freedman, Lynn R. Goldin, David Ginsburg, Jun Li, Karl C. Desch, Sara S. Strom,
William J. Blot, Lisa B. Signorello, Sue A. Ingles, Stephen J. Chanock, Sonja I. Berndt, Loic Le
Marchand, Brian E. Henderson, Kristine R Monroe, John A. Heit, Mariza de Andrade, Sebastian M.
Armasu, Cynthia Regnier, William L. Lowe, M. Geoffrey Hayes, Mary L. Marazita, Eleanor
Feingold, Jeffrey C. Murray, Mads Melbye, Bjarke Feenstra, Jae Hee Kang, Janey L. Wiggs, Gail
Jarvik, Andrew N. McDavid, Venkatraman E. Seshan, Daniel B. Mirel, Andrew Crenshaw, Nataliya
Sharopova, Anastasia Wise, Jess Shen, David R. Crosslin, David M. Levine, Xiuwen Zheng,
Jenna I Udren, Siiri Bennett, Sarah C. Nelson, Stephanie M. Gogarten, Matthew P. Conomos,
Patrick Heagerty, Teri Manolio, Louis R. Pasquale, Christopher A. Haiman, Neil Caporaso, Bruce
S. Weir
Do mosaic subjects have increased
incidence of hematological cancer?
                        Mosaic                  Non-mosaic
Event                    15                       90
No event                134                     8,323
Cox proportional hazards regression:
Stratified analysis of the four cohorts
Time to event ~ Age + non-hematological cancer status (time-
dependent) + ethnicity + sex (within the PLCO stratum)
The hazard ratio estimate for mosaic status is 10.1 (95% CI=5.8 - 17.7)
and the p-value is 3 x 10-10
Meta-analysis gave very similar estimate.
CGF
                         Metrics
360,214 DNA profiles                         7.6 x 1013 SNP genotypes
    (Identifiler)
   5.7 x 10-6 STRs




                            150 Gbps regional sequencing




    80 whole genomes +         328 samples whole-exome
    80 on the way                     sequencing

More Related Content

Similar to Dr. Stephen Chanock: Genome-wide Association Studies

Friend Collabsum 20130131
Friend Collabsum 20130131Friend Collabsum 20130131
Friend Collabsum 20130131Sage Base
 
Cytoscape Workshop at Salk 12/4/2012
Cytoscape Workshop at Salk 12/4/2012Cytoscape Workshop at Salk 12/4/2012
Cytoscape Workshop at Salk 12/4/2012Keiichiro Ono
 
Prof Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXR
Prof Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXRProf Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXR
Prof Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXRAttività scientifica
 
Chemokines
ChemokinesChemokines
Chemokinesejmckee
 

Similar to Dr. Stephen Chanock: Genome-wide Association Studies (8)

Boston liver aasld
Boston liver  aasldBoston liver  aasld
Boston liver aasld
 
Cotsapas ASHG 2011
Cotsapas ASHG 2011Cotsapas ASHG 2011
Cotsapas ASHG 2011
 
Friend Collabsum 20130131
Friend Collabsum 20130131Friend Collabsum 20130131
Friend Collabsum 20130131
 
Ap2 Alpha
Ap2 AlphaAp2 Alpha
Ap2 Alpha
 
Apoptosis
ApoptosisApoptosis
Apoptosis
 
Cytoscape Workshop at Salk 12/4/2012
Cytoscape Workshop at Salk 12/4/2012Cytoscape Workshop at Salk 12/4/2012
Cytoscape Workshop at Salk 12/4/2012
 
Prof Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXR
Prof Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXRProf Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXR
Prof Stefano Fiorucci - Nuclear receptors and lipid metabolism on FXR
 
Chemokines
ChemokinesChemokines
Chemokines
 

More from National Cancer Institute National Cancer Informatics Program

More from National Cancer Institute National Cancer Informatics Program (7)

Dr. Ying Xiao: Radiation Therapy Oncology Group Bioinformatics
Dr. Ying Xiao: Radiation Therapy Oncology Group BioinformaticsDr. Ying Xiao: Radiation Therapy Oncology Group Bioinformatics
Dr. Ying Xiao: Radiation Therapy Oncology Group Bioinformatics
 
Dr. Subha Madhavan: G-DOC – Enabling Systems Medicine through Innovations in ...
Dr. Subha Madhavan: G-DOC – Enabling Systems Medicine through Innovations in ...Dr. Subha Madhavan: G-DOC – Enabling Systems Medicine through Innovations in ...
Dr. Subha Madhavan: G-DOC – Enabling Systems Medicine through Innovations in ...
 
Dr. Ethan Cerami: cBio Cancer Genomics Portal
Dr. Ethan Cerami: cBio Cancer Genomics PortalDr. Ethan Cerami: cBio Cancer Genomics Portal
Dr. Ethan Cerami: cBio Cancer Genomics Portal
 
Dr. David Gutman: Development and Validation of Radiology Descriptors in Gliomas
Dr. David Gutman: Development and Validation of Radiology Descriptors in GliomasDr. David Gutman: Development and Validation of Radiology Descriptors in Gliomas
Dr. David Gutman: Development and Validation of Radiology Descriptors in Gliomas
 
Dr. Martin McIntosh: Identifying Cancer Selective Proteins Using RNA-Sequenci...
Dr. Martin McIntosh: Identifying Cancer Selective Proteins Using RNA-Sequenci...Dr. Martin McIntosh: Identifying Cancer Selective Proteins Using RNA-Sequenci...
Dr. Martin McIntosh: Identifying Cancer Selective Proteins Using RNA-Sequenci...
 
Dr. Eliot Siegel: Watson and Deep QA Software in Pursuit of Personalized Medi...
Dr. Eliot Siegel: Watson and Deep QA Software in Pursuit of Personalized Medi...Dr. Eliot Siegel: Watson and Deep QA Software in Pursuit of Personalized Medi...
Dr. Eliot Siegel: Watson and Deep QA Software in Pursuit of Personalized Medi...
 
Dr. Lee Cooper: Integrated Morphologic Analysis for Identification and Charac...
Dr. Lee Cooper: Integrated Morphologic Analysis for Identification and Charac...Dr. Lee Cooper: Integrated Morphologic Analysis for Identification and Charac...
Dr. Lee Cooper: Integrated Morphologic Analysis for Identification and Charac...
 

Recently uploaded

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 

Recently uploaded (20)

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 

Dr. Stephen Chanock: Genome-wide Association Studies

  • 1. Genome-wide Association Studies in Cancer: A Step in the Right Direction Stephen Chanock, M.D. Chief, Laboratory of Translational Genomics Director, Core Genotyping Facility June 20, 2012
  • 2. Genetic Predisposition to Breast Cancer European Population 10 BRCA1 BRCA2 Population genotype relative risk TP53 PTEN CHEK2 3 ATM PALB2 BRIP1 RAD51C ERCC2 1.5 1.4 1.3 1.2 > Doubling in 2012 1.1 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Population risk-allele frequency BCAC CGEMS/BCAC WTCCC Other
  • 3. 97 Genes Mutated in Cancer Susceptibility Syndromes SDHB MUTYH ALK FANCD2 MSH2 MSH6 VHL XPC HRAS FANCL MLH1 PMS2 FANCF BAP1 TERT FANCE EGFR CDKN2 WT1 MITF FANCG A SDHA DDB2 PHOXB2 POLH EXT2 WRN TMEM127 CDK4 GATA2 SBDS NBS1 GALNT1 SDHAF2 PTPN11 HAX1 XPA 2 RET MEN1 SDHC ERCC3 TERC PTCH BMPR1 ATM MET PTEN A SDHD DIS3L2 KIT FANCC SUFO CBL HRPT2 TSC1 PDGFRA APC EXT1 RECQL4 T FH FANCB SLX4 TSC2 TP53 ELANE ERCC4 WRAP53 STK11 FANCN/BRIP FLCN 1 TINF2 CEBPA NF1 RUNX1 SMARCB1 BRCA2 FANCM ERCC2 CHEK2 BRCA1 RB1 CYLD FANCJ SMAD4 NF2 MAX BUB1B CDH1 RAD51C FANCI FANCA HOXB13 BLM DICER1 ERCC5 GPC3 DKC1 C Kratz
  • 4. Genome-Wide Association Studies: Age of Discovery • Discovery of New Regions in the Genome Associated with Diseases/Traits • New “Candidate Genes & Regions” • Clues for Mechanistic Insights Into the Contribution of Common Genetic Variation to Cancer Biology • Challenge of Genetic Markers for Risk Prediction • Individual Risk • Public Health Decisions • Polygenic Risk Models
  • 5. Published Cancer GWAS Etiology Hits: 5.15.12 KIF1B 1p36 ~240 Disease Loci marked by SNPs DDX1 IRF4 6p22 1 Locus marked by a CNV SLC4A7/ C2orf43 NEK10 6p21 THADA ITGA9 TACC3 TERT/ GPRC6A FOXP4 Another 85 coming soon… DMRT1 10p15.1 LSP1 11p15 TERT CLPTM1L DLG2 GSTM1 EHBP1 CLPTM1L GABBR1 breast, bladder, kidney, lung,10p14 JAZF1 NAT2 CDKN2A/ BNC2 LMO1 12p11.23 deletion REL 3p12.1 HLA-F 1p11.2 3p11.2 5p15 HLA-A ovary, prostate, TCGT IKZF1 8p21 CDKN2B GATA3 MSMB/ ATM ATF7IP 5p12 EGFR 6p21.33 NCOA4 FAM111A 1q22 2q13 5q11.2 11q13 KRT5 ARIDB5 3q13 6p21.32 1q21.1 PDLIM5 5q11 HSD17B12 EEFSEC BAK1 LMTK2 PLCE1 EPAS1 ADH1B 5q13 TYR KITLG 1q21.3 FOXE1 TET2 DDX4 ECHDC1/ ZNF365 11q23.1 12q13.13 1q32.1 ITGA6 RNF146 EIF3H 9q31.2 FGFR2 PHLDB1 3q26 C6orf97/ 7q32 ALDH2 SPRY4 8q24.21(x5) MYC CCDC26 8q24.21 ABO CTBP2 11q24.1 TARDBP 2q31 ESR1 7q32 TP63 SLC22A3 PSCA 10q21.2 1q41 CASP8 ERG2 1q42 BARD1 LINC00340 10q22.3 1q42.12 2q35 10q26 FARP2 2q37 19p13 C20orf54 RHPN2 BMP2 NUDT10/ CCNE1 15q15 22q12.25 NUDT11 CEBPE HNF1B x 2 SLC14A1 ASIP MX2 19q13.2 22q13 NKX2-1 GREM1 TOX3 COX11/ SMAD7 PRKD2 15q21.3 21q22 BIK BMP4 CDH1 STXBP4 RTEL1 KLK2/ 15q23 16q24.1 17q24.3 KLK3 KLF5/ RAD51L1 KLF12 CHRNA3/ MC1R 3 Ewing Sarcoma 3 Kidney 4 Thyroid 2 Non-Hodgkin 5 Ovary 3 Gastric 9 Multiple CHRNA5 13q12.125 3 Hodgkins 13q22 2 Wilms 1 Liver 10 CLL 6 Neuroblastoma 4 Pediatric Acute Lymphoblastic Leukemia 7 Esophageal Squamous 48 Prostateate 26* Breast 13 Colorectal 7 Basal Cell Carcinoma11* Bladde7 Glioma 6 Lung 9 Melanoma 4 Pancreas 7 Nasopharyngeal 6 Testicular 7 Chung & Chanock 2011
  • 6. Lessons from GWAS Discovery • P values matter- to protect against a sea of false positives • Size matters • Design “sort of” matters……. • Mapping is required to explore each region prior to functional work • Collaboration is central Epidemiology meets Genetics to Discover Biology Not for weak of heart or stomach…
  • 7. Lessons from GWAS Discovery • P values matter- to protect against a sea of false positives • Size matters • Design “sort of” matters……. • Mapping is required to explore each region prior to functional work • Collaboration is central- Can’t do it alone Not for weak of heart or stomach…
  • 8. CGF & Data Sharing • Posted first public GWAS datasets for breast & prostate cancer in 2006 • Aggregate data removed in 2008 in response to NIH policy change • Led development of standards for GWAS posting with dbGaP • Contributed all DCEG GWAS datasets to dbGaP • CGF was instrumental in addressing privacy issues with GWAS and other high-dimensional aggregate genomics data • 11 scans currently listed on dbGaP
  • 9. GWAS Regions for Testicular Cancer Point Towards Alterations in a Common Pathway High Estimate for Heritability Strong Familial Component MZ Twins= 75 X DZ Twins= 20-25 X Strongest Effects Observed in GWAS KITLG Heterozygote OR= 2.5, Homozygote > 5.0
  • 10. GWAS Studies: Just the Start…… “This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.” Sir Winston Churchill @ Lord Mayor's Luncheon, Mansion House following the victory at El Alameinin North Africa London, 10 November 1942.
  • 11. Prostate Cancer Risk Factors 2006 • Age • Ethnic Background • Family History
  • 12. Prostate Cancer: 48 as of May 1, 2012 > 24 More to come 2p24.1 THADA EHBP1 No Clear Evidence of Specific Loci 5p15.33 RFX6 JAZF1 11p15 FOXP4 3 3p12.1 3p11 For Advanced Disease 8p21 MSMB/ FAM111A NCOA4 11q13 10q11.23 12q13 PDLIM5 EEFSEC LMTK2 TET2 ITGA6 8q24.21 CTBP2 SLC22A3 5 10q26 2q27.3 Suggests Distinct Regions Influence Etiology & Outcome NUDT10/ NUDT11 HNF1B 19q13.2 2 BIK KLK2/ 13q22.1 17q24.3 KLK3 Type 2 Diabetes PSA or Prostate Cancer or both??
  • 13. Prostate Cancer Risk Factors 2012 • Age • Ethnic background • Family history • Multiple common alleles-  48 published & more coming….  Each common variant explains a small proportion of risk  Together 15%
  • 14. Prediction is difficult, Especially about the future. Yogi Berra Dan Quayle Niels Bohr
  • 15. Discriminatory Power of Genetic Risk Score for Prostate Cancer Area Under the ROC Curve Model Under Over 65 75 FHx only 0.55 0.51 G only 0.66 0.60 G + FHx 0.68 0.60 PSA 0.87 0.84 P Kraft, S Lindstrom for the BPC3
  • 16. Theoretical Limits of Risk Prediction Crohn’s Disease Common cancers (Br or Pr) Sibling relative-risk=20-35 Sibling relative risk=2-3 Park et al., Nat Genet ,2010 Different Diseases Display Distinct Architectures Random Using known loci Using all estimated loci Ideal (if we could explain all heritability) Park et al Nature Genetics 2010
  • 17. Next Generation GWAS • Distinct Populations – Prostate Cancer in Japan or in African Americans – Esophageal Cancer in China • Meta-Analysis Yield Discoveries – Larger Scans – Large Scale Replication (iCOGS) • Shift to lower MAF – New Arrays vs Low-Pass Sequence Coverage – Imputation • Better for Mapping Regions – Larger Sample Sizes Required
  • 18. Distinct Differences in the Underlying Genetic Architecture of Different Cancers Preliminary Phase of Estimating Differential Contribution Common Variants Log additive Effects oEpistatic Effects oUncommon Variants oRare/Familial Mutations
  • 19. Genetic Predisposition to Breast Cancer European Population 10 BRCA1 BRCA2 Population genotype relative risk TP53 PTEN CHEK2 3 ATM PALB2 BRIP1 RAD51C ERCC2 1.5 1.4 1.3 1.2 > Doubling in 2012 1.1 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Population risk-allele frequency BCAC CGEMS/BCAC WTCCC Other
  • 20. Genomic Architecture of Prostate Cancer Susceptibility Loci: BRCA2 5 3 ???? Per allele relative risk 1.4 1.2 1 0 0.05 0.50 0.95 1 Risk-allele frequency
  • 21. Genetic predisposition to neuroblastoma: Current status and future directions 100 Discovered mutations ALK Yet to be discovered mutations Discovered polymorphisms PHOX2B Additional mutations and Yet to be discovered polymorphisms rare polymorphisms to be TP53 discovered by NGS Effect size SDHB Additional polymorphisms 10 to be discovered by GWAS PTPN11 FLJ22536 5 DDX4 LMO1 BARD1 HSD17B12 NBPF23 NME7 1 0.001 0.01 0.1 DUSP12 0.5 IL31RA Modified from Manolio, et al. Nature 2009 Allele Frequency
  • 22. Genomic Architecture of Lung Cancer Susceptibility Loci 5 3 ???? Per allele relative risk Smoking…. 1.4 Adenocarcinoma specific Stronger in nonsmokers 1.2 1 0 0.05 0.50 0.95 1 Risk-allele frequency
  • 23. Investigation of GWAS Markers Non- Coding Initial Findings Protein Variant Coding Bioinformatic Regulatory Unannotated Effect on Element Transcript Protein Analysis Alteration of Effect on Functional Novel mRNA Allelic Gene Levels Epigenetic Genes Elements Transcripts Stability Differences Elsewhere Expression Expression Gene Functional Histone Experimental Elements Methylation Quantitative miRNA Quantitative Product Strategy Trait RNASeq Trait Functional In vitro/vivo Elements Analysis Analysis Analysis
  • 24. 10q11.2 & Prostate Cancer Risk rs10993994 within promoter of MSMB= b-microseminoprotein Prostate specific serum marker under study 20,000 subjects Functional Analysis Risk Allele “T” Lower expression levels Reporter assays Electrophoretic Mobility Shifts Levels in Prostate Tissue Tumor Tissue
  • 25. 10q11.2 Could Be More Complex…… MSMB and NCOA4 Re-sequence 454 FLX ~100 subjects RNA Expression MSMB and NCOA4 Normal Tumor Tissue Anchorage Independent Growth is Specific to Prostate MSMB- Suppression NCOA4- Over-expression
  • 26. Characterization of Chimeric Transcript at 10q11.23 MSMB-NCOA4 Fusion RT-PCR of MSMB-NCOA4 fusion transcripts in human tissues and 9 prostate cancer cell lines Expression of MSMB-NCOA4 fusion protein in PC3 transfected cells organization of Genomic MSMB and NCOA4 Confirmed by Predicted fusion transcripts (UCSC) Western Blot Immunoprecipitation anti-N (MSMB) & anti-C (NCOA4) Fusion transcripts identified by 5’ RACE Lou et al in press Hum Genet 2012
  • 27. 11q13: Multi-Cancer Susceptibility Region Discovery by GWAS & Mapping CGEMS (Thomas NG 2008) GWAS 1-> 3 Loci (Chung et al HMG 2011) Australia/ iCOGS Analysis J French
  • 28. Admixture Analysis of Native Asian African American European GWAS Data: Use of Differences in Allele Frequencies to Map Regions that Contribute to Differences in STRUCTURE Incidence Population Structure Analysis Can 1000s of SNPs assist in Identifying Individuals at Higher Risk for Poor Response to Pediatric ALL? • GWAS Scan as a Preliminary Biomarker JJ Yang et al Nature Genetics 2011
  • 29. Association testing Genome-wide association studies Behavioral traits Biometrics Nutrient levels Tobacco Height, Weight, BMI, Vitamins D, B12 Caffeine Menarche/Menopause Carotene Alcohol >200 regions & Height/Weight
  • 30. Loci Associated with BMI Rethinking “Pathways” Opportunities for: 1. Pathway Analyses 2. Polygenic Model GIANT CONSORTIUM
  • 31. Unexpected Findings Genetic Mosaicism & the Aging Genome Genome-wide association studies Large chromosomal abnormalities, structural variation, aneuploidy in germline DNA Rodriguez-Santiago AJHG 2010 Jacobs et al Nature Genetics 2012 Laurie et al Nature Genetics 2012
  • 32. Looking at LRR/BAF graphs B-allele Homozygous σLRR=0.24 σBAF=0.044 Heterozygous A-allele Homozygous LRR – log ratio of observed probe intensity to expected intensity – Significant deviation from zero is evidence for copy number change BAF – B allele frequency – ratio of B probe intensity to total intensity - Expected values for diploid loci are 0, ½ and 1. Other values can indicate allelic imbalance and suggest copy number changes or mosaicism.
  • 33. Definition of Genetic Mosaicism Co-existence of distinct subpopulations of cells regardless of the clonal or developmental origin Presence of large structural genomic events (> 2 Mb) Resulting in alteration of • Copy number (gain or loss) • Loss of heterozygosity
  • 34. Mosaicism in the Extreme • Age-old explanation for developmental disorders and catastrophic diseases (NF) • Trisomy 21, Turners (XO) • Rare, Highly Penetrant Mutations lead to Variegated Aneuploidy • BUB1B • CEP57 • Complex Syndromes • Proteus Syndrome & AKT1 (NEJM 2011) • Ollier Disease & IDH1/IDH2 (Nature Genetics 2011) • HRAS- Skin/Cancer (NEJM 2011)
  • 35. Validation for 42 Events Observed 100% 1.7% Overall No Association with Bladder Cancer Risk Rodríguez-Santiago et al. Am J Hum Genet. 2010;87:129-38
  • 36. Genetic Mosaicism of the Autosomes • Analysis of 13 GWAS 57,853 • Cancer cases 31,717 • Cancer-free controls 26,136 • Mosaic events detected 681 • Autosomal chromosomes 641 • Individuals 517 • Individuals with multiple events 69 Jacobs et. al. Nature Genetics 2012
  • 37. Genetic Mosaic Events 0.4 0.3 gain neutral LOH 0.2 loss 0.1 log2 intensity ratio (LRR) 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Proportion of abnormal cells (p)
  • 38. Age at DNA Collection is the Strongest 3.0% 2.5% Predictor of Genetic Mosaicism 2.0% Frequency 1.5% 1.0% 0.5% 0.0% <45 45‐49 50‐54 55‐59 60‐64 65‐69 70‐74 75‐ Age at DNA collection Cancer Free Cancer DX Jacobs et. al. Nature Genetics 2012
  • 39. Higher Frequency in Men Compared to Women Females Males Cancer Free 0.56% 0.87% Cancer 0.79% 1.21% Overall 0.65% 1.04%
  • 40. Frequency of Mosaic Events by Type & Location Mosaic Chromosome Count Mosaic Chromosome Frequency (%) Event Location gain loss cnloh mixed Total gain loss cnloh mixed Total chromosome 62 11 42 5 120 9.7 1.7 6.6 0.8 18.7 telomeric P 11 13 114 1 139 1.7 2.0 17.8 0.2 21.7 telomeric Q 9 10 149 0 168 1.4 1.6 23.2 0.0 26.2 interstitial 14 185 2 1 202 2.2 28.9 0.3 0.2 31.5 span centromere 1 1 2 0 4 0.2 0.2 0.3 0.0 0.6 complex 0 3 0 5 8 0.0 0.5 0.0 0.8 1.2 Total 97 223 309 12 641 15.1 34.8 48.2 1.9
  • 41. Number of chromosomes with mosaic events • 69 individuals have two or more events – 46 cancer cases – 23 cancer-free Count of cancer mosaic Likely Possibly cancer- Cancer chromosomes Untreated Treated Total free type(s) 1 166 111 277 171 2 15 13 28 18 3 7 0 7 3 4 3 0 3 1 5 0 2 2 1 6 0 1 1 0 prostate 7 1 0 1 0 CLL & ovary 11 0 1 1 0 gastric 16 1 0 1 0 lung 20 0 2 2 0 gastric
  • 42. Circos Plot of mosaic events in 57,583 individuals (681 events) 0.4 0.3 neutral LOH 0.2 gain 0.1 loss tio (LRR) 0
  • 43. Adjusted analysis of association between mosaicism & cancer All cancer cases Likely Untreated Possibly Treated Site of first cancer OR 95% CI p value OR 95% CI p value OR 95% CI p value non-hematologic cancer 1.27 (1.05-1.52) 0.012 1.45 (1.18-1.80) 5.4E-04 1.03 (0.81-1.30) 0.804 bladder 1.30 (0.90-1.89) 0.164 1.50 (1.01-2.23) 0.043 0.73 (0.32-1.68) 0.455 breast 0.72 (0.41-1.27) 0.256 0.49 (0.18-1.32) 0.159 0.90 (0.46-1.79) 0.770 endometrium 1.27 (0.64-2.50) 0.494 1.35 (0.42-4.30) 0.611 1.24 (0.54-2.82) 0.610 esophagus 0.86 (0.34-2.18) 0.751 3.51 (0.45-27.58) 0.232 0.76 (0.29-2.03) 0.590 glioma 0.88 (0.45-1.74) 0.717 0.95 (0.44-2.05) 0.892 0.70 (0.17-2.86) 0.622 kidney 1.98 (1.27-3.06) 2.3E-03 2.32 (1.46-3.69) 3.6E-04 0.95 (0.30-3.03) 0.931 lung 1.56 (1.18-2.08) 2.0E-03 1.69 (1.23-2.33) 1.3E-03 1.27 (0.81-1.96) 0.295 osteosarcoma 1.34 (0.39-4.59) 0.637 1.34 (0.39-4.59) 0.637 ovary 1.18 (0.48-2.93) 0.718 1.09 (0.27-4.47) 0.903 1.27 (0.40-4.04) 0.690 pancreas 0.89 (0.60-1.33) 0.574 0.55 (0.14-2.24) 0.406 0.93 (0.62-1.41) 0.735 prostate 1.14 (0.79-1.64) 0.485 1.28 (0.85-1.92) 0.243 0.92 (0.51-1.66) 0.781 stomach 1.43 (0.68-3.03) 0.345 3.35 (0.74-15.13) 0.116 1.32 (0.61-2.88) 0.481 testis 3.29 (0.59-18.46) 0.176 3.29 (0.59-18.46) 0.176 other sites 1.49 (0.55-4.05) 0.438 1.49 (0.55-4.05) 0.438
  • 44. Hematological Cancers and “Mosaicism” A Tale of Two Studies NCI Study (Jacobs et al 2012) GENEVA (Laurie et al 2012) 43 Hematological cancers Subanalysis in 4 cohorts for Higher frequency Heme cancers 15.8% Myeloid Hazard ratio estimate for mosaic 26.3% CLL status =10.1 (95% CI=5.8 - 17.7) Untreated leukemia vs. p=3 x 10-10 cancer-free controls OR=35.4 (14.7-76.6 95% CI) p=3.8×10-11 Jacobs et al., 2012 Laurie et. al., 2012
  • 45. Chromosome Y Mosaic Aneuploidy Pre-Correction Post-Correction Example of whole chromosome loss in ~60% of cells • Uncorrected appears to be segmental loss • Corrected results are clearly whole chromosome loss
  • 46. SRY RPS4Y1 ZFY qPCR Assay Panel for chrY loss • 15 probes designed to determine copy AMELY TBL1Y PRKY number of single-copy genes relative to RNaseP USP9Y • Coverage across p- and q-arms DDX3Y UTY TMSB4Y NLGN4Y CYorf15A CYorf15B KDM5D EIF1AY
  • 47. Calling whole chromosome Y-loss from Infinium GWAS data calibrated using qPCR Ratios for 15 Regions 1.40 y = 0.8599x + 0.132 R² = 0.8121 Uncalibrated Y-loss from Infinium LRR 1.20 1.00 Possible 0.80 Gain No Loss 0.60 Undetermined 0.40 Probable Loss 0.20 0.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Y-loss from 15 qPCR Probes
  • 48. The Aging Genome: Implications for Cancer Studies • Importance of thorough characterization of ‘germline’ DNA in parallel with somatic analyses • Insights into Genomic Instability Early vs. Late Events • Genetic biomarkers for early detection of hematological cancers
  • 49. Two Hypotheses for Mosaicism in the Aging Genome Early Event Late Event Embryonic Progenitors with Somatic Increase in Somatic Alterations with Alterations Are Below Threshold Age of Detection PLUS Unknown Events Trigger Survival Decreased Genomic Stability due to Bottleneck Telomere Attrition LEADS TO LEADS TO Proliferation of Suppressed Positive Selection with Rapid Populations of Somatically Expansion of Second Clonal Altered Clones Population Decreased Cellular Diversity with Aging and Cell Populations Become Increasingly Oligoclonal Co-existence of Distinct Clonal Populations
  • 50. Using Population Studies to Gain Biological Insights into Genetic Mosaicism: • Map breakpoint sites (Mitelman/ENCODE) • Analyze paired tumors in identified studies • Investigate timing and dynamics (serial samples) • Proportions & cell type • Blood Bank Study at NIH • Australian Twin Registry (2000) • Confirm Non-hematological Association • New lung/kidney studies • Sex Chromosomes • Y chromosome in TGS • X has challenge of Lyonization
  • 51. Detectable Genetic Mosaicism & Hematological Cancers • PLCO heme cancers (> 700) • Serial samples for ~25% • NHL GWAS • 9000 Cases (5 subtypes) • Aplastic Anemia (NHLBI- N Young) • 20% MDS/Leukemia • CLL/Waldenstrom families (GEB) • MBL/MGUS serial samples • CLL Study (L Staudt)
  • 52. Milestones at the Core Genotyping Facility 2001 2002 2004 2006 2008 2010 2012 2014 & beyond Whole Genome Candidate SNP Sequencing Functional Data Genome Wide Association Population-based Studies Exome Candidate Genes Sequencing Sequencing Biological Plausibility Genetic Markers Candidate Pathway Biological Plausibility Regional Sequencing GWAS & Linkage
  • 53. Human Genetics: Thresholds and Significance • Each new technology has brought us to a new ‘crisis’ Linkage and LOD scores in too few families Candidate Gene/SNPS in small studies GWAS in insufficiently powered studies Required replication/validation CNVs and power outages together with unstable calling algorithms Exome sequencing, oligogenic models with insufficient number of families Whole genome sequencing and the rising tide of ‘uninterpretable’ variants…
  • 54. Let’s not fool ourselves about germline genetics… • First it is about……..Discovery Biology Targets Possible risk variants • Then…………………….Validation • Followed by…………Characterization • Later…………………….Clinical application • Distant future………Targets Don’t forget lifestyle/environment…..
  • 55. Mapping Genetic Architecture • Comprehensive map will emerge across spectrum of variation • GWAS Common Variants • Sequencing Uncommon and Rare Variants • Search for “Pathways” • Moderate penetrance breast cancer genes • Develop Risk Profiles in Age of Sequencing • Can Prevention or Early Detection Improve Outcome?
  • 56. In the not too distant future • We will look back and think of GWAS as the “Golden Age” • The temptation is to continue to do GWAS – Should not be abandoned (esp with imputation) – Think bigger in size for comprehensively exploring MAF spaces • > 10% • 1-10% • < 1% Can it be done by association testing?? But the allure of sequencing is at hand…..
  • 57. Emerging Impact of Population Genetics in the Search for ‘Elusive’ Variants • In GWAS era- we tolerated minor mismatching because sample sizes and MAFs are large • As MAFs fall, challenge of population private variants ‘sky-rockets’ • How do we know if a rare variant in one population is non-contributory whereas in a second population it influences risk/outcome? • Value of functional validation • Challenge of Environmental Exposure/Lifestyle
  • 58. Advances will be accelerated by “Collective Intelligence” “I not only use all of the brains I have, but all I can borrow” Woodrow Wilson
  • 59. Acknowledgements NCI-DCEG HSPH LTG Joseph Fraumeni David Hunter Renee Chen Peggy Tucker Pete Kraft Charles Chung Gilles Thomas Sara Lindstrom Jean- Nicolas Cornu Robert Hoover Jun Fang Meredith Yeager BPC3 & CGEMS Phoebe Lee Kevin Jacobs ACS (M Thun) Lea Jessop Sharon Savage ATBC (D Albanes-DCEG) Hye Kim Nilanjan Chatterjee CAPS (H Gronberg/J Xu) Joe Kovacs Nat Rothman CeRePP (O Cussenot) Tim Myers JuHyun Park CONOR (L Vatten) Nilabja Sikdar Sonja Berndt EPIC (E Riboli) Sharon Savage JHU (W Issacs/J Xu) Strategic Support Lindsay Morton MEC (B Henderson) MJ Horner Zhaoming Wang PLCO (R Hayes) Tammy Bell NCI-CCR WHI (R Prentiss) Mike Dean Investigators Hong Lou DFCI Laufey Amundadottir Institut Curie Matt Freedman Kevin Brown Olivier Delattre Mark Pomerantz Mila Prokunina-Olsson Carlo Lucchesi
  • 60. Acknowledgements Glioma Preetha Rajamaran (NCI,) Laura Beane Freeman (NCI), Christine Berg (NCI), Julie Buring, Ulrika Andersson, Mary Butler, Tania Carreon, Maria Feychting, Anders Ahlbomm J Michael Gaziano, Graham Giles, Goran Hallmans, Wei Zheng, Susan E Hankinson, 189 authors from 48 participating studies: Roger Henriksson, Peter D Inskip, Christoffer Johansen Annelie Landgren, Roberta McKean-Cowdin, Dominique Kevin Jacobs Michaud, Beatrice Melin, Ulrike Peters, Avima Ruder, Howard Upper GI Sesso, Gianluca Severi, Xiao-Ou Shu, Kala Visvanathan, Emily Meredith Yeager Christian Abnett, Alisa White, Alicja Wolk, Anne Zeleniuch-Jacquotte, Margaret Tucker Goldstein, Phil Taylor, Wei Zheng, Manolis Kogevinas Neal Freedman, Linda Nathaniel Rothman Liao, Ti Ding, You-Lin Sholom Wacholder Qiao, Yu-Tang Gao, African-American Lung Cancer Consortium Woon-Puay Koh, Yong- Luis Perez-Jurado Bing Xiang, Ze-Zhong Krista Zanetti (NCI), Melinda Aldrich, Chris Amos, Joseph Fraumeni Tang, Jin-Hu Fan, Jian- William Blot, Cathryn Bock, Elizabeth Gillanders, Curt Min Yuan Harris, Chris Haiman, Brian Henderson, Laurence Kolonel, Loic Le Marchand, Lorna McNeill, Benjamin Rybicki, Ann Schwartz, Lisa Signorello, Margaret Breast (CGEMS) Spitz, John Wiencke, Margaret Wrensch, Xifeng Wu Prostate Cancer (CGEMS) David Hunter Robert Hoover, Gilles Thomas, Peter Kraft Sonja Berndt, Weiyin Zhou, Xiang Louise A Brinton, Lung Deng, Chenwei Liu, Michael Cullen, Neal Caporaso, Teresa Landi, Lynn Goldin, Dario Jolanta Lissowska, Ann Hsing, Caroline Epstein, Laurie Consonni, Pier Alberto Bertazzi, Melissa Rotunno Beata Peplonska Burdett, Nilanjan Chatterjee, Joshua Regina Ziegler Sampson, Amanda Black, Michael PanScan Dean, Charles, Chung, Joseph Patricia Hartge, Laufey Amundadottir, Rachael Kovaks, Nan Hu, Kai Yu, MJ Horner Stolzenberg-Solomon (NCI), Demetrius Albanes (NCI), Renal Jarmo Virtamo, Zhaoming Wang, Amy Hutchinson, Alan American Cancer Society Mark Purdue, Wong- A Arslan, H Bas Bueno-de-Mesquita, Charles Fuchs, Ho Chow, Lee E Susan Gapstur, Victoria Stevens, Steven Gallinger, Myron D Gross, Elizabeth Holly, Alison Moore, Kendra Lauren Teras, Mia Gaudet Klein, Andrea LaCroix, Margaret Mandelson, Gloria Schwartz, Faith Davis Petersen, Marie-Christine Boutron-Ruault, Paige M Bracci, Federico Canzian, Kenneth Chang,Michelle Cottercho, Ed Giovannucci, Michael Goggins, Judith Bladder Hoffman Bolton, Mazda Jenab, Kay-Tee Khaw, Vittorio Montse Garcia-Closas, Debra Krogh, Robert Kurtz, Robert McWilliams, Julie B Silverman, B. Rodriguez-Santiago, Testis, Ovary & Mendelsohn, Kari Rabe Elio Riboli, Anne Tjonneland, Nuria Malats,, Francisco Real, Jonine Endometrium Geof Tobias, Dimitrios Trichopoulos, Joanne Elena, Figueroa, Ludmila Prokunina-Olsson, Christian Kratz, Katherine Herbert Yu, Fredrick Shumacher, Daniel Stram, Lisa Dalsu Baris, Gaelle Marenne, Manolis McGlynn, Mark Greene, Mirabello, Juan R Gonzalez, Olaya Villa, Donghui Li, Eric Kogevinas, Molly Schwenn, Alison Michael Cook, Barry J Duell, Harvey A Risch, Sara H Olson, Charles Johnson Graubard, Ralph Erickson, Kooperberg, Brian M Wolpin, Li Jiao, Manal Hassan, Nicolas Wentzensen William Wheeler Osteosarcoma Sharon Savage, Irene Andrulis, Jay Wunder, Ana Patiao-Garcia, Luis Sierrasesumaga, Donald A Barkauskas, Richard Gorlick
  • 61. 61 Chromosomal mosaicism from birth to old age and its relationship to hematological cancer Investigators: Cathy C. Laurie, Cecelia A. Laurie, Kenneth Rice, Kimberly F. Doheny, Leila R. Zelnick, Caitlin P. McHugh, Hua Ling, Kurt N. Hetrick, Elizabeth W. Pugh, Chris Amos, Qingyi Wei, Li-e Wang, Jeffrey E. Lee, Kathleen C. Barnes, Nadia N. Hansel, Rasika Mathias, Denise Daley, Terri H. Beaty, Alan F. Scott, Ingo Ruczinski, Rob B. Scharpf, Laura J. Bierut, Sarah M. Hartz, Maria Teresa Landi, Neal D. Freedman, Lynn R. Goldin, David Ginsburg, Jun Li, Karl C. Desch, Sara S. Strom, William J. Blot, Lisa B. Signorello, Sue A. Ingles, Stephen J. Chanock, Sonja I. Berndt, Loic Le Marchand, Brian E. Henderson, Kristine R Monroe, John A. Heit, Mariza de Andrade, Sebastian M. Armasu, Cynthia Regnier, William L. Lowe, M. Geoffrey Hayes, Mary L. Marazita, Eleanor Feingold, Jeffrey C. Murray, Mads Melbye, Bjarke Feenstra, Jae Hee Kang, Janey L. Wiggs, Gail Jarvik, Andrew N. McDavid, Venkatraman E. Seshan, Daniel B. Mirel, Andrew Crenshaw, Nataliya Sharopova, Anastasia Wise, Jess Shen, David R. Crosslin, David M. Levine, Xiuwen Zheng, Jenna I Udren, Siiri Bennett, Sarah C. Nelson, Stephanie M. Gogarten, Matthew P. Conomos, Patrick Heagerty, Teri Manolio, Louis R. Pasquale, Christopher A. Haiman, Neil Caporaso, Bruce S. Weir
  • 62.
  • 63. Do mosaic subjects have increased incidence of hematological cancer? Mosaic Non-mosaic Event 15 90 No event 134 8,323 Cox proportional hazards regression: Stratified analysis of the four cohorts Time to event ~ Age + non-hematological cancer status (time- dependent) + ethnicity + sex (within the PLCO stratum) The hazard ratio estimate for mosaic status is 10.1 (95% CI=5.8 - 17.7) and the p-value is 3 x 10-10 Meta-analysis gave very similar estimate.
  • 64. CGF Metrics 360,214 DNA profiles 7.6 x 1013 SNP genotypes (Identifiler) 5.7 x 10-6 STRs 150 Gbps regional sequencing 80 whole genomes + 328 samples whole-exome 80 on the way sequencing