SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Successfully reported this slideshow.
Activate your 30 day free trial to unlock unlimited reading.
7.
DEIM 2016
提案⼿法-パラグラフベクトル-
• PV-DMモデル:⽂脈ベクトルと次単語のベクトルとの内積が,周辺単語以外の単語ベクトルとの
内積より⼤きくなるように次単語のベクトルを予測
• PV-DBOWモデル:パラグラフベクトルを元にパラグラフ内の単語をランダムにウインドウ⻑分
選択し,単語ベクトルを予測
• パラメータ調整:ウインドウ⻑,ベクトル⻑,学習回数,中間層のベクトル(結合, 和,平均)
7
w -3)
w -
w
w -2)
INPUT Classifier
PV-DBOW
Paragraph
id
Paragraph
id
w
INPUT
Concatenate/
Sum / Average
Classifier
PV-DM
w -3
w -2
w t-1