Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

통계적 시각화 Pt 20130119 knou

469 views

Published on

  • Be the first to comment

통계적 시각화 Pt 20130119 knou

  1. 1. 한국방송통신대학교 2013/01/19 통계적 시각화Statistical Visualization: Small Ideas and Significant Differences 허 명 회 (고려대학교) stat420@korea.ac.kr ⇒ 1
  2. 2. Background... § 통계 그래프 statistical graph → 데이터 시각화 data visualization § 文盲 illiteracy, 數盲 innumeracy, 圖盲 graph blind § 데이터 기술 data technology (DT) § 멋, 재미 artistic and fun!2013/01/19 myung.hoe.huh 2
  3. 3. Divertmento... - Two Monocycles play 1 play 22013/01/19 myung.hoe.huh 3
  4. 4. Outlines... - Moving Conditioning Plot - Rotating Data Clouds - Regression Biplot - Exploring Many Variables - Visualizing A Function of Multiple Variables2013/01/19 myung.hoe.huh 4
  5. 5. Moving Conditioning Plot - Scatterplot can show only two variables (x,y) at a time. - How to show the third variable z? - Example: lattice library quakes data (longitude, latitude, depth, magnitude)2013/01/19 myung.hoe.huh 5
  6. 6. Moving Conditioning Plot - Dynamic Version: Plot (x,y) only for observations with z in      , where      ↑ as  (time) passes. Demo 1, 2 time     ∣ 2013/01/19 myung.hoe.huh 6
  7. 7. Rotating Data Clouds - The Case of  ≧   Variables (x,y,z) - Plot of z vs.  cos   x +  sin   y, for  from 0 to   . For    , the graph shows the pattern of z vs. x.  For    , the graph shows the pattern of z vs. y.  ⋮ z y x2013/01/19 myung.hoe.huh 7
  8. 8. Rotating Data Clouds - Example: mclust library diabetes data (insulin, sspg, glucose) Demo the weights given to x and y.2013/01/19 myung.hoe.huh 8
  9. 9. Regression Biplot - Linear Regression:  equals     ⋯     ,        where   ⋯    are  ×  standardized explanatory vectors.      1. The predicted is directed along the  ×  weight vector   ⋮ .     2. For the    ⋯    th case, the predicted equals    ,   where   is  ×  explanatory vector observed at the  th case.  3. To explore the explanatory space, we walk on the principal route (vector)    ×   which is orthogonal to    ×  .      2013/01/19 myung.hoe.huh 9
  10. 10. Regression Biplot - Examples: L. Stack Loss data (y = stack.loss, x1,x2,x3) R. Aerobic Fitness data (y = oxygen uptake, x1,x2,x3,x4,x5,x6) * Filled circles represent fitted values and open circles represent the observed values.2013/01/19 myung.hoe.huh 10
  11. 11. Exploring Many Variables - Tour on the Globe:     ×  standardized variables   ⋯   such that ∥  ∥      .     * * * * * *  - Shortest path touring  locations,   ⋯    on the globe (of radius  ):   1) Traveling Salesman’s Problem, 2) Hurley’s endlink.2013/01/19 myung.hoe.huh 11
  12. 12. Exploring Many Variables - Combining Local Views (rather than A Single Global Picture): - Example: gclus library body parts data,    . V1 V2 V3 V4 V5 V6 V7 V8 V9 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V14 V15 V16 V17 V18 V19 V20 V21 Demo2013/01/19 myung.hoe.huh 12
  13. 13. More Topics - Visualizing A Function of Multiple Variables ... - Moving Data Pictures ...2013/01/19 myung.hoe.huh 13
  14. 14. http://blog.naver.com/huh42002013/01/19 myung.hoe.huh 14

×