Successfully reported this slideshow.
Upcoming SlideShare
×

# 통계적 시각화 Pt 20130119 knou

469 views

Published on

• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### 통계적 시각화 Pt 20130119 knou

1. 1. 한국방송통신대학교 2013/01/19 통계적 시각화Statistical Visualization: Small Ideas and Significant Differences 허 명 회 (고려대학교) stat420@korea.ac.kr ⇒ 1
2. 2. Background... § 통계 그래프 statistical graph → 데이터 시각화 data visualization § 文盲 illiteracy, 數盲 innumeracy, 圖盲 graph blind § 데이터 기술 data technology (DT) § 멋, 재미 artistic and fun!2013/01/19 myung.hoe.huh 2
3. 3. Divertmento... - Two Monocycles play 1 play 22013/01/19 myung.hoe.huh 3
4. 4. Outlines... - Moving Conditioning Plot - Rotating Data Clouds - Regression Biplot - Exploring Many Variables - Visualizing A Function of Multiple Variables2013/01/19 myung.hoe.huh 4
5. 5. Moving Conditioning Plot - Scatterplot can show only two variables (x,y) at a time. - How to show the third variable z? - Example: lattice library quakes data (longitude, latitude, depth, magnitude)2013/01/19 myung.hoe.huh 5
6. 6. Moving Conditioning Plot - Dynamic Version: Plot (x,y) only for observations with z in      , where      ↑ as  (time) passes. Demo 1, 2 time     ∣ 2013/01/19 myung.hoe.huh 6
7. 7. Rotating Data Clouds - The Case of  ≧   Variables (x,y,z) - Plot of z vs.  cos   x +  sin   y, for  from 0 to   . For    , the graph shows the pattern of z vs. x.  For    , the graph shows the pattern of z vs. y.  ⋮ z y x2013/01/19 myung.hoe.huh 7
8. 8. Rotating Data Clouds - Example: mclust library diabetes data (insulin, sspg, glucose) Demo the weights given to x and y.2013/01/19 myung.hoe.huh 8
9. 9. Regression Biplot - Linear Regression:  equals     ⋯     ,        where   ⋯    are  ×  standardized explanatory vectors.      1. The predicted is directed along the  ×  weight vector   ⋮ .     2. For the    ⋯    th case, the predicted equals    ,   where   is  ×  explanatory vector observed at the  th case.  3. To explore the explanatory space, we walk on the principal route (vector)    ×   which is orthogonal to    ×  .      2013/01/19 myung.hoe.huh 9
10. 10. Regression Biplot - Examples: L. Stack Loss data (y = stack.loss, x1,x2,x3) R. Aerobic Fitness data (y = oxygen uptake, x1,x2,x3,x4,x5,x6) * Filled circles represent fitted values and open circles represent the observed values.2013/01/19 myung.hoe.huh 10
11. 11. Exploring Many Variables - Tour on the Globe:     ×  standardized variables   ⋯   such that ∥  ∥      .     * * * * * *  - Shortest path touring  locations,   ⋯    on the globe (of radius  ):   1) Traveling Salesman’s Problem, 2) Hurley’s endlink.2013/01/19 myung.hoe.huh 11
12. 12. Exploring Many Variables - Combining Local Views (rather than A Single Global Picture): - Example: gclus library body parts data,    . V1 V2 V3 V4 V5 V6 V7 V8 V9 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V14 V15 V16 V17 V18 V19 V20 V21 Demo2013/01/19 myung.hoe.huh 12
13. 13. More Topics - Visualizing A Function of Multiple Variables ... - Moving Data Pictures ...2013/01/19 myung.hoe.huh 13
14. 14. http://blog.naver.com/huh42002013/01/19 myung.hoe.huh 14