Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Neurofeedback Research Overview (V2)

1,850 views

Published on

An overview of neurofeedback research, brought to you by Myndlift.

Published in: Health & Medicine
  • Login to see the comments

  • Be the first to like this

Neurofeedback Research Overview (V2)

  1. 1. Overview of Neurofeedback Research This document contains summaries of the current research related to EEG neurofeedback as applied in seven major areas of brain health: ​attention-deficit hyperactivity disorder (ADHD)​, addictive disorders​, ​anxiety​, ​cognitive decline​, ​depression​, ​peak performance​, and post-traumatic stress disorder (PTSD)​. This is followed by lists of academic references for studies reporting on neurofeedback research in a wide range of brain health applications, as well as references on ​conceptual​ and ​methodological​ considerations, and a list of references that include ​guidelines​ for clinicians and researchers. Each reference list is subdivided into studies​, ​case reports​, and ​reviews​. Research Summaries Attention-Deficit Hyperactivity Disorder (ADHD) ADHD is the most well-studied condition in neurofeedback research. Based on meta-analyses and large multicenter randomized controlled trials (RCTs), two frequency neurofeedback protocols researched for more than 40 years have been shown efficacious and specific for ADHD: theta-beta ratio (TBR) and sensorimotor rhythm (SMR) (AAPB Guidelines; La Vaque et al., 2002). Frequency neurofeedback for ADHD received a grade 1 (‘‘best support’’) rating from the American Academy of Pediatrics in 2013. TBR aims to decrease theta (4–7 Hz) and/or increase beta (12–21 Hz) power in central and frontal locations to reduce the high theta-beta ratios, high theta power, and/or low beta power characteristic of children and adults with ADHD. Recent RCTs suggest that 30–40 sessions of TBR neurofeedback were as effective as methylphenidate in ameliorating inattentive and hyperactivity symptoms and were even associated with superior post-treatment academic performance (Duric et al., 2012; Meisel et al., 2013). SMR over the sensorimotor strip (predominantly right-central) is based on the functional association of the sensorimotor rhythm with behavioral inhibition in ADHD. In seminal studies (Lubar & Shouse, 1976; Shouse & Lubar, 1979), it was demonstrated that the beneficial hyperactivity-reducing effects of combined SMR/theta training were maintained even after psychostimulants were withdrawn in hyperactive children. Studies suggest that TBR and SMR reduce inattentive and hyperactive/impulsive symptoms to a similar extent and after a comparable number of training sessions. A series of meta-analyses have shown that the standard TBR and SMR protocols improve ADHD symptoms, especially inattention (Arns et al., 2009; Micolaud-Franchi et al., 2014; Bussalb et al., 2019; Riesco-Matías et al., 2019). Efficacy is clear for parentally-rated 1
  2. 2. symptoms and less certain for teacher-rated symptoms (Micolaud-Franchi et al., 2014; Cortese et al., 2016; Razoki, 2018; Bussalb et al. 2019). However, parent ratings are associated with candidate gene pathways (Bralten et al., 2013), and teachers may be less sensitive to change (Cortese et al., 2016; Bussalb et al., 2019). Using objective cognitive outcomes, a recent meta-analysis found neurofeedback to be more efficacious than cognitive training in ameliorating symptoms of inhibition (Lambez et al., 2020). Critically, a meta-analysis focusing on long-term maintenance found that after an average 6 months from completion of neurofeedback, the beneficial effects of neurofeedback were superior to semi-active control groups and methylphenidate (Van Doren et al., 2019). These findings demonstrate that whereas medication efficacy diminishes over time, neurofeedback efficacy increases. The best evidence for efficacy comes from double-blind placebo-controlled RCTs, though it is challenging to devise a placebo condition that properly controls for psychosocial factors like perceptibility and motivation (Gaume et al., 2016). One of the largest and most comprehensive such trials is currently being carried out (International Collaborative ADHD Neurofeedback; ICAN; Arnold et al., 2013; 2018; 2019), with conclusive results anticipated soon. → GO TO REFERENCES Addictive Disorders EEG neurofeedback has been applied to addictive disorders for over 30 years, demonstrating promising results in well-controlled intervention studies, good adherence, reduced addiction severity, and psychosocial benefits even in patients with severe substance abuse. Consequently, EEG neurofeedback has been classified as “probably efficacious” as an adjunctive treatment for substance abuse (AAPB Guidelines; La Vaque et al., 2002; Sokhadze et al., 2008). Known as the ​Peniston protocol​ (or ​alpha-theta training​), the classical neurofeedback protocol for addictive disorders was originally applied in the treatment of alcoholism (Peniston & Kulkosky, 1989; Peniston & Kulkosky, 1990). The Peniston protocol assesses EEG activity in an eyes-closed resting condition while clients aim to increase parietal alpha (8-12 Hz) and theta (4-7 Hz) associated with a relaxed state, reducing EEG hyperarousal and augmenting coping skills (Gruzelier, 2009). Due to commonalities between substance use and ADHD, the Peniston protocol was later supplemented with initial sessions that aim to enhance central sensorimotor rhythm (SMR; 12-15 Hz) as is done for ADHD. Called the ​Scott-Kaiser modification​, this composite protocol has been efficacious in individuals with polydrug abuse and high levels of impulsivity (Scott et al., 1998; Scott et al., 2005); other ADHD-based protocols (e.g., enhance SMR, inhibit theta and high-beta; Fielenbach et al., 2019) have also been applied. Given variation in type, duration, and severity of substance use, a neurofeedback protocol personalized for the observed brain activity has been advocated (Sokhadze et al., 2008). 2
  3. 3. A recent review (Schmidt et al., 2017) identified 7 EEG neurofeedback clinical intervention trials in substance use since 2010, including 4 randomized controlled trials (RCTs). Disorders included misuse of: opiates (2 studies; Dehghani-Arani et al., 2010; Dehghani-Arani et al., 2013), stimulants like cocaine and methamphetamine (3 studies; Hashemian et al., 2015; Horrell et al., 2010; Rostami & Dehghani-Arani, 2015), alcohol (1 study; Lackner et al., 2015), and mixed substance and polydrugs (1 study; Keith et al., 2015). Sample sizes ranged from 10-100, and the number of neurofeedback sessions varied from 10-30. Neurofeedback protocols were mainly the Peniston protocol (some with adjustments; see also Dalkner et al., 2017) and Scott-Kaiser modification. In all studies, neurofeedback supplemented other interventions (e.g., pharmacotherapy, psychosocial like cognitive behavioral therapy [CBT]). Except for the alcohol dependence study, all studies reported positive addiction-related outcomes, especially reductions of addiction severity and craving. There were also global psychological and health improvements in most studies. Two studies reported objective measures, showing substance use abstinence in a urine test (Horrell et al., 2010) and improved scores on neuropsychological tests of attention and impulsivity (Keith et al., 2015). Changes in baseline alpha and theta activity were found in alcohol dependence, as well as changes in the overall EEG, SMR and (reduced) gamma in opiate dependence. The one sham-controlled study revealed superiority of alpha-theta neurofeedback in clients with methamphetamine misuse compared with sham (Hashemian, 2015). Critically, one study showed the superiority of neurofeedback to psychotherapy, with equivalent efficacy for clinician- and computer-guided neurofeedback (Keith et al., 2015). In sum, recent studies show promising short-term effects of EEG neurofeedback in reducing craving and modifying dysfunctional brain activity. Additional RCTs are needed that aim to control for nonspecific effects by comparison with other psychophysiological treatments (e.g., electrodermal/HRV biofeedback); RCTs with long-term follow-up are needed to evaluate the occurrence of relapse. → GO TO REFERENCES Anxiety Alpha-theta (alpha, theta, alpha-theta enhancement) neurofeedback training, which reduces arousal, has been applied to reduce anxiety (as well as addiction) and create a generally relaxed state of well-being (Moore, 2000; Gruzelier, 2009). EEG neurofeedback offers an attractive option, as medication is only mildly more effective than placebo in treating anxiety disorders. Training is typically administered with eyes closed while listening to auditory feedback for a total of 7-12 hours of training. As applied to generalized anxiety disorder (GAD), 9 of 10 neurofeedback studies reviewed by Moore (2000) and Hammond (2005a,b) produced positive changes in clinical outcome, with evidence for an anxiety reduction that endures even after 18 months (Watson et 3
  4. 4. al., 1978). Indeed, for anxiety disorders, neurofeedback qualifies for the evidence-based designation of an efficacious treatment (Hammond, 2005a,b), with GAD and phobic anxiety disorder (as well as PTSD, summarized separately), demonstrating effects beyond placebo and meeting criteria for “probably efficacious” on the basis of American Psychological Association Clinical Psychology Division (Chambless & Hollon, 1998) and biofeedback specialty criteria (La Vaque et al., 2002). A recent systematic review of biofeedback in anxiety disorders (Tolin et al., 2020) reported a large advantage for EEG neurofeedback over wait list control groups, with higher quality studies showing superior effects; there was no clear benefit relative to active control groups, though few such studies were available to be included. In a GAD study of high-talent musicians performing under stressful conditions, only musicians who received alpha-theta (enhancement) training yielded enhanced musical performance under stress (Egner & Gruzelier, 2003). In one RCT of test anxiety, neurofeedback participants generated 33% more alpha and showed a significant reduction in anxiety; by comparison, untreated participants and those receiving relaxation training experienced no significant symptom reduction (Garrett & Silver, 1976). A recent study in adolescents with self-reported attention and anxiety (e.g., thoughts of worry) symptoms found enhanced alpha and sensorimotor rhythm (SMR) along with improved symptoms (by visual analogue scales) after neurofeedback training of alpha, theta, and SMR twice a week for five weeks (Tsatali et al., 2019). → GO TO REFERENCES Cognitive Decline Neurofeedback has been applied to improve cognitive function in a variety of conditions, most prominently attention-deficit hyperactivity disorder (ADHD), associated with impaired attention and executive function (see separate research summary). There is now an emerging body of research on neurofeedback for improving cognitive function in such conditions as stroke (Kober et al., 2015; 2017) and multiple sclerosis (Kober et al., 2019; Keune et al., 2019), with a particular focus on Alzheimer’s disease (AD), the most common form of dementia, as well as mild cognitive impairment (MCI), a pre-dementia condition (Petersen et al., 2004; Albert et al., 2011), in the hopes of delaying the insidious cognitive decline and dementia onset. Memory impairment is the hallmark of early AD and its precursor amnestic MCI (aMCI); other cognitive domains may also be impaired. In the EEG, MCI and AD are generally characterized by an ​increase​ in slow frequencies (delta: 2-4 Hz; theta: 4-8 Hz) and a ​decrease in faster frequencies (alpha: 8-12 Hz; beta: 13-20 Hz) (Vigil & Tataryn, 2017). These EEG features have been linked to poor cognitive performance (Klimesch, 1999), atrophy of thalamus, hippocampus and basal ganglia (Moretti et al., 2012; Wolf et al., 2004), and the formation of amyloid-beta plaques (Sharma & Nadkarni, 2020). Notably, a smaller change in alpha between 4
  5. 5. eyes-open and eyes-closed states has been tied to psychomotor and cognitive slowing, as well as memory impairment in MCI (Van der Hiele et al., 2007) and AD (Pritchard et al., 1991). Neurofeedback protocols in healthy and mildly impaired older adults have mainly targeted enhancing alpha, inhibiting theta, or increasing the alpha-theta ratio at posterior sites (e.g., Chapin & Russel-Chapin, 2014). Some have used attention training to enhance sensorimotor rhythm (SMR; low beta) (SMR) or reduce theta-beta ratio (TBR) at central sites (Jiang et al., 2017; Jang et al., 2019), given that enhancing attention improves encoding, maintenance and retrieval of items held in working memory. Several recent studies have reported better memory performance in MCI following neurofeedback. Lavy and colleagues (2019) found improved verbal memory after ten 30-minute sessions in which MCI participants enhanced individual central-parietal upper-alpha; improvement was maintained at 30-day follow-up. Jirayucharoensak and colleagues (2019) used alpha- and beta-enhancement neurofeedback (twenty 30-minute sessions) as an add-on to usual care in healthy or aMCI women and found improved rapid visual processing and spatial working memory. A small MCI study that enhanced beta over dorsolateral prefrontal cortex found improved memory, cognitive flexibility, complex attention, reaction time, and executive function (Jang et al., 2019). In AD, studies using individualized neurofeedback protocols have reported improved cognitive screener performance (Surmeli et al., 2016) and memory/executive function as compared with wait list control (Berman & Frederick, 2009). To summarize, initial evidence suggests that EEG neurofeedback is a promising methodology for timely, effective intervention for cognitive decline. Large-scale controlled trials with follow-up are needed to identify/validate the optimal protocols to delay MCI onset and conversion to dementia, as well as elucidate the relationship between neurofeedback and particular cognitive functions. → GO TO REFERENCES Depression Neurofeedback for depression is based on well-established EEG research indicating that the left frontal area is more associated with positive affect, while the right frontal area is more involved with negative emotion (see, e.g., Davidson, ​Philos. Trans. R. Soc. Lond. B​, 2004). A biologic predisposition for depression exists when there is an asymmetry in brain wave activity, such that there is excessive left frontal alpha (8-12 Hz) reflecting less activation and failure to suppress the subcortical structures that mediate depression (Walker et al., 2007). Indeed research has shown that when the left frontal region is “stuck” in an alpha idling rhythm, there is both reduced positive affect and more withdrawal behavior. Conversely, when there is increased left frontal beta (15-18 Hz), there is more activation and a greater sense of wellbeing. 5
  6. 6. One neurofeedback protocol for modifying this suboptimal brain state involves modifying the left-right alpha balance at electrodes F3 and F4 (with a Cz reference). Research supports the efficacy of this ALAY (“alpha asymmetry”) protocol (Choi et al., 2011; Peeters et al., 2014), including evidence indicating changes in the asymmetry and depressive symptoms endure 1 and 5 years after the end of treatment (Baehr et al., 2001). In a recent study, major depressive disorder (MDD) most participants who received 1-hour/week ALAY intervention for 6 weeks regulated their asymmetry and showed improvement in depressive symptoms, though 43% were non-responders (Wang et al., 2016). Notably, although pharmacologic intervention yields remission of depression, it does not affect the frontal alpha asymmetry, suggesting that individuals who receive such intervention continue to have this biomarker for future depression. Another neurofeedback protocol directly targets reducing left frontal alpha rather than modifying the left-right alpha balance (Walker et al., 2007). This protocol involves enhancing left-frontal beta (typically 15-18 Hz) and inhibiting left-frontal theta or alpha to yield greater activation, which, in turn, generally triggers improved mood. Studies have shown that enhancing beta and inhibiting theta or alpha at C3 reduced depressive symptoms in most patients (Walker et al., 2007). In a recent controlled trial, Liu (2017) applied an enhance beta/inhibit alpha protocol at F3 in 32 college students with MDD. In addition to regulating brainwaves, the neurofeedback intervention was protective, significantly reducing recurrence and intensity of depressive symptoms for 3 weeks post-intervention; in contrast, depressive symptoms increased in active control participants. → GO TO REFERENCES Peak Performance EEG neurofeedback for ‘peak’ or ‘optimal’ performance focuses on facilitating brain performance in healthy individuals to achieve maximal brain functioning. Specifically, peak performance protocols aim to control level of arousal, attention and motivation, optimizing level of autonomic control and ability to shift states. A concrete goal of peak performance training is the completion of a specific function or task with fewer errors and greater efficiency, resulting in a more positive outcome (Vernon, 2005). Twenty-three controlled studies have reported neurofeedback learning indices along with beneficial outcomes, including gains in: sustained attention, orienting and executive attention, the P300b event-related potential, memory, spatial rotation, reaction time, complex psychomotor skills, implicit procedural memory, recognition memory, perceptual binding, intelligence, mood and well-being (Gruzelier et al., 2014). Gains have been achieved by a variety of neurofeedback protocols, including: sensorimotor rhythm (SMR), beta and gamma, theta, and alpha power. Indeed peak performance surpasses other neurofeedback domains in that the majority of studies demonstrate evidence of learning. 6
  7. 7. Neurofeedback may optimize cognitive processing and learning by modifying white matter pathways and gray matter volume resulting in faster conduction velocity in neural networks. With regard to alpha power training, it has been suggested that engaging in a well-practiced task is associated with elevated alpha power, reflecting decreased cortical information processing and a more automatic stage of skill acquisition (Mirifar et al., 2017). In one study, increased SMR power improved accuracy and speed of surgery skills (Ros et al., 2009). In another study, inhibition of theta power reduced radar detection errors (Beatty et al., 1974). Egner and Gruzelier (2004) reported faster reaction time in an attention task following an inhibit theta/enhance mid-beta protocol, and memory improvement has been reported following upper-alpha training (Escolano et al., 2011; Zoefel et al., 2011). A recent review found that 12 of 14 full studies reported positive effects in athletes, with 7 of 10 showing positive effects on performance, 3 of 6 studies reporting improved affective outcomes, and 3 of 3 reporting better cognitive outcomes (Mirifar et al., 2017). Though the evidence is overwhelmingly encouraging, sample sizes are small, and little is known about how methodological characteristics (e.g., number of training sessions, particular neurofeedback protocol) impact outcomes (Vernon et al., 2009; Mirifar et al., 2017). Thus larger, controlled studies are needed to address these issues and provide a clear understanding of the specific effects of neurofeedback on peak performance. → GO TO REFERENCES Post-Traumatic Stress Disorder (PTSD) Evidence-based practice guidelines for PTSD recommend trauma-focused cognitive behavioral therapy (CBT) and eye movement desensitization and reprocessing (EMDR) as effective treatment modalities. However, the dropout rate for these therapies is high (Bisson et al., 2013; National Institute of Clinical Excellence (NICE), 2005). Pharmacological treatment (e.g., selective serotonin reuptake inhibitors; SSRIs) may also be effective, but the evidence is weaker. Further, treatment with pharmacological and psychotherapy-based therapies may last several years and are ineffectual for ~40% of patients (Bradley et al., 2005; NICE, 2005; Stein et al., 2006). EEG neurofeedback is a non-pharmacologic alternative that meets “probably efficacious” criteria for PTSD (Hammond, 2005a,b; Reiter et al., 2016) on the basis of American Psychological Association Clinical Psychology Division (Chambless & Hollon, 1998) and biofeedback specialty criteria (La Vaque et al., 2002). A recent systematic review and meta-analysis pooled data across four randomized controlled trials (RCTs) in PTSD (​n​=123) and revealed a very large effect size (standard mean difference of -2.30; 95% CI: -4.37 to -0.24) for improvement in PTSD symptoms that exceeded effect sizes for internet-based cognitive therapy and meditation-related exercises (Steingrimsson et al., 2020). The studies consistently 7
  8. 8. favored neurofeedback in terms of symptom severity and number of patients achieving remission. Specifically, PTSD symptoms were reduced by 34-66% in the neurofeedback group, but ranged from a reduction of 15% to an increase of 13% in the control groups (3 passive, 1 active). The one study with follow-up (van der Kolk et al., 2016) reported 46% symptom reduction posttreatment and 51% symptom reduction at 1-month follow-up (compared with reductions of 13% posttreatment and 14% at 1-month follow-up in controls). At 1-month follow-up, 58% (11/19) of neurofeedback patients achieved remission as compared with 11% (2/19) of controls. In one study (Noohi et al., 2017), neurofeedback significantly improved performance on cognitive tests of executive function. In another (Peniston & Kulkosky, 1991), all neurofeedback patients (14/14) reduced psychotropic medication use as compared with one patient (1/13) in the control group. Though the extant evidence is encouraging (see also reviews by Reiter et al. 2016; Panisch & Hai, 2018), additional controlled studies are desirable for greater confidence and clarity regarding the efficacy of neurofeedback in PTSD. Indeed small, heterogeneous samples and different study designs preclude specific recommendations for the optimal neurofeedback protocol. Enhance alpha/inhibit theta protocols are often used for PTSD (e.g., Pensiston & Kulkosky, 1991; Noohi et al., 2017), but there is considerable variation in the frequency bands trained (e.g., Pop-Jordanova & Zorcec, 2004 used SMR enhancement), session duration (e.g., Kluetsch et al., 2013: single session; Peniston & Kulkosky, 1991: 30 sessions), inter-session interval and duration of treatment. Also, only one RCT included an active control group (van der Kolk et al., 2016; standard treatment), and no studies have incorporated a sham control. → GO TO REFERENCES 8
  9. 9. Academic Reference Lists Attention-Deficit Hyperactivity Disorder (ADHD) 11 STUDIES 11 CASE REPORTS 19 REVIEWS 19 Addictive Disorders 25 STUDIES 25 CASE REPORTS 27 REVIEWS 27 Anxiety 28 STUDIES 28 CASE REPORTS 31 REVIEWS 31 Autism Spectrum Disorders (ASD) 33 STUDIES 33 CASE REPORTS 34 REVIEWS 34 Chronic Fatigue Syndrome and Fibromyalgia 35 STUDIES 35 CASE REPORTS 35 REVIEWS 35 Cognitive Decline 36 STUDIES 36 CASE REPORTS 38 REVIEWS 39 Depression 39 STUDIES 39 CASE REPORTS 40 REVIEWS 41 Eating Disorders 41 STUDIES 41 REVIEWS 42 Epilepsy 43 STUDIES 43 CASE REPORTS 44 REVIEWS 45 Learning & Developmental Disabilities 46 STUDIES 46 CASE REPORTS 47 9
  10. 10. REVIEWS 48 Medical Conditions 48 STUDIES 48 CASE REPORTS 50 REVIEWS 50 Obsessive Compulsive Disorder 51 STUDIES 51 REVIEWS 51 Pain and Headache 52 STUDIES 52 CASE REPORTS 53 REVIEWS 53 Peak Performance 53 STUDIES 53 CASE REPORTS 55 REVIEWS 55 Post Traumatic Stress Disorder (PTSD) 56 STUDIES 56 CASE REPORTS 58 REVIEWS 58 Schizophrenia 59 STUDIES 59 CASE REPORTS 60 REVIEWS 60 Sleep 60 STUDIES 60 CASE REPORTS 61 REVIEWS 61 Traumatic Brain Injury (TBI), Stroke, Coma, & Cerebral Palsy 62 STUDIES 62 CASE REPORTS 64 REVIEWS 65 Conceptual/Theoretical 67 STUDIES 67 REVIEWS 68 Methodology & Mechanisms 71 STUDIES 71 REVIEWS 74 Guidelines for Research & Clinical Practice 77 10
  11. 11. Attention-Deficit Hyperactivity Disorder (ADHD) STUDIES Arnold, L. E., DeBeus, R., Kerson, C., Monastra, V. J., Rice, R. R., Barterian, J. A., and Pan, X. (2019). One-year follow-up of double-blind RCT of neurofeedback for ADHD. ​Journal of the American Academy of Child & Adolescent Psychiatry​ 58, S316–S317. doi:10.1016/j.jaac.2019.07.733. Arnold, L. E., Kerson, C., Monastra, V., Pan, J., Kraemer, H., Rice, R., Barterian, J. A., Schrader, C., and Rhodes, R. (2018). Outcomes of double-blind RCT of neurofeedback for ADHD. ​Journal of the American Academy of Child & Adolescent Psychiatry​ 57, S283. doi:10.1016/j.jaac.2018.07.666. Arnold, L. E., Lofthouse, N., Hersch, S., Pan, X., Hurt, E., Bates, B., Kassouf, K., Moone, S., and Grantier, C. (2013). EEG neurofeedback for ADHD: Double-blind sham-controlled randomized pilot feasibility trial. ​J. Atten. Disord.​ 17, 410–419. doi:10.1177/1087054712446173. Arns, M., Feddema, I., and Kenemans, J. L. (2014). Differential effects of theta/beta and SMR neurofeedback in ADHD on sleep onset latency. ​Front. Hum. Neurosci.​ 8, 1019. doi:10.3389/fnhum.2014.01019. Arns, M., Kleinnijenhuis, M., Fallahpour, K., and Breteler, R. (2008). Golf performance enhancement and real-life neurofeedback training using personalized event-locked EEG profiles. ​J. Neurother.​ 11, 11–18. doi:10.1080/10874200802149656. Bhayee, S., Tomaszewski, P., Lee, D. H., Moffat, G., Pino, L., Moreno, S., and Farb, N. A. S. (2016). Attentional and affective consequences of technology supported mindfulness training: A randomised, active control, efficacy trial. ​BMC Psychol.​ 4, 60. doi:10.1186/s40359-016-0168-6. Bink, M., Bongers, I. L., Popma, A., Janssen, T. W. P., & van Nieuwenhuizen, C. (2016). 1-year follow-up of neurofeedback treatment in adolescents with attention-deficit hyperactivity disorder: Randomised controlled trial. ​BJPsych Open​, ​2​(2), 107–115. https://doi.org/10.1192/bjpo.bp.115.000166 Bink, M., van Nieuwenhuizen, C., Popma, A., Bongers, I. L., & van Boxtel, G. J. M. (2015). Behavioral effects of neurofeedback in adolescents with ADHD: A randomized controlled 11
  12. 12. trial. ​European Child & Adolescent Psychiatry​, ​24​(9), 1035–1048. https://doi.org/10.1007/s00787-014-0655-3 Bioulac, S., Purper-Ouakil, D., Ros, T., Blasco-Fontecilla, H., Prats, M., Mayaud, L., and Brandeis, D. (2019). Personalized at-home neurofeedback compared with long-acting methylphenidate in an European non-inferiority randomized trial in children with ADHD. BMC Psychiatry​ 19, 237. doi:10.1186/s12888-019-2218-0. Bluschke, A., Friedrich, J., Schreiter, M. L., Roessner, V., and Beste, C. (2018). A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder. Neuroimage Clin.​ 20, 1191–1203. doi:10.1016/j.nicl.2018.10.027. Boyd, W. D., and Campbell, S. E. (1998). EEG biofeedback in the schools: The use of EEG biofeedback to treat ADHD in a school setting. ​J. Neurother.​ 2, 65–71. doi:10.1300/J184v02n04_05. Boynton, T. (2001). Applied research using alpha/theta training for enhancing creativity and well-being. ​J. Neurother.​ 5, 5–18. doi:10.1300/J184v05n01_02. Breteler, R., Pesch, W., Nadorp, M., Best, N., and Tomasoa, X. (2012). Neurofeedback in residential children and adolescents with mild mental retardation and ADHD behavior. ​J. Neurother.​ 16, 172–182. doi:10.1080/10874208.2012.705742. Carmody, D. P., Radvanski, D. C., Wadhwani, S., Sabo, M. J., and Vergara, L. (2000). EEG biofeedback training and attention-deficit/hyperactivity disorder in an elementary school setting. ​J. Neurother.​ 4, 5–27. doi:10.1300/J184v04n03_02. Cho, B.-H., Kim, S., Shin, D. I., Lee, J. H., Lee, S. M., Kim, I. Y., and Kim, S. I. (2004). Neurofeedback training with virtual reality for inattention and impulsiveness. Cyberpsychol. Behav.​ 7, 519–526. doi:10.1089/cpb.2004.7.519. Cueli, M., Rodríguez, C., Cabaleiro, P., García, T., and González-Castro, P. (2019). Differential efficacy of neurofeedback in children with ADHD presentations. ​J. Clin. Med.​ 8, 204. doi:10.3390/jcm8020204. Deiber, M.-P., Hasler, R., Colin, J., Dayer, A., Aubry, J.-M., Baggio, S., Perroud, N., and Ros, T. (2019). Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. ​Neuroimage Clin.​ 25, 102145. doi:10.1016/j.nicl.2019.102145. Dobrakowski, P., and Łebecka, G. (2020). Individualized neurofeedback training may help achieve long-term improvement of working memory in children with ADHD. ​Clin. EEG Neurosci.​ 51, 94–101. doi:10.1177/1550059419879020. 12
  13. 13. Dupuy, F. E., Clarke, A. R., and Barry, R. J. (2013). EEG activity in females with attention-deficit/hyperactivity disorder. ​J. Neurother.​ 17, 49–67. doi:10.1080/10874208.2013.759024. Duric, N. S., Assmus, J., Gundersen, D., Duric Golos, A., and Elgen, I. B. (2017). Multimodal treatment in children and adolescents with attention-deficit/hyperactivity disorder: A 6-month follow-up. ​Nord. J. Psychiatry​ 71, 386–394. doi:10.1080/08039488.2017.1305446. Duric, N. S., Assmus, J., Gundersen, D., and Elgen, I. B. (2012). Neurofeedback for the treatment of children and adolescents with ADHD: A randomized and controlled clinical trial using parental reports. ​BMC Psychiatry​ 12, 107. doi:10.1186/1471-244X-12-107. Egner, T., and Gruzelier, J. H. (2003). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. ​Neuroreport​ 14, 1221–1224. doi:10.1097/01.wnr.0000081875.45938.d1. Egner, T., and Gruzelier, J. H. (2004). EEG Biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol.​ 115, 131–139. doi:10.1016/S1388-2457(03)00353-5. Egner, T., and Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. ​Neuroreport​ 12, 4155–4159. doi:10.1097/00001756-200112210-00058. Escolano, C., Navarro-Gil, M., Garcia-Campayo, J., Congedo, M., and Minguez, J. (2014). The effects of individual upper alpha neurofeedback in ADHD: An open-label pilot study. Appl. Psychophysiol. Biofeedback​ 39, 193–202. doi:10.1007/s10484-014-9257-6. Fielenbach, S., Donkers, F. C., Spreen, M., and Bogaerts, S. (2018). Effects of a theta/sensorimotor rhythm neurofeedback training protocol on measures of impulsivity, drug craving, and substance abuse in forensic psychiatric patients with substance abuse: Randomized controlled trial. ​JMIR Ment Health​ 5, e10845. doi:10.2196/10845. Foks, M. (2005). Neurofeedback training as an educational intervention in a school setting: How the regulation of arousal states can lead to improved attention and behaviour in children with special needs. ​Educational and Child Psychology​ 22, 67–77. Fritson, K. K., Wadkins, T. A., Gerdes, P., and Hof, D. (2008). The impact of neurotherapy on college students’ cognitive abilities and emotions. ​J. Neurother.​ 11, 1–9. doi:10.1080/10874200802143998. 13
  14. 14. Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., and Kaiser, J. (2003). Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. ​Appl. Psychophysiol. Biofeedback​ 28, 1–12. Geladé, K., Janssen, T. W. P., Bink, M., van Mourik, R., Maras, A., and Oosterlaan, J. (2016). Behavioral effects of neurofeedback compared to stimulants and physical activity in attention-deficit/hyperactivity disorder: A randomized controlled trial. ​J. Clin. Psychiatry 77, e1270–e1277. doi:10.4088/JCP.15m10149. Geladé, K., Janssen, T. W. P., Bink, M., Twisk, J. W. R., van Mourik, R., Maras, A., and Oosterlaan, J. (2018). A 6-month follow-up of an RCT on behavioral and neurocognitive effects of neurofeedback in children with ADHD. ​Eur. Child Adolesc. Psychiatry​ 27, 581–593. doi:10.1007/s00787-017-1072-1. González-Castro, P., Cueli, M., Rodríguez, C., García, T., and Álvarez, L. (2016). Efficacy of neurofeedback versus pharmacological support in subjects with ADHD. ​Appl. Psychophysiol. Biofeedback​ 41, 17–25. doi:10.1007/s10484-015-9299-4. Hansen, L. M., Trudeau, D. L., and Grace, D. L. (1996). Neurotherapy and drug therapy in combination for adult ADHD, personality disorder, and seizure disorder. ​J. Neurother.​ 2, 6–14. doi:10.1300/J184v02n01_02. Heywood, C., and Beale, I. (2003). EEG biofeedback vs. placebo treatment for attention-deficit/hyperactivity disorder: A pilot study. ​J. Atten. Disord.​ 7, 43–55. doi:10.1177/108705470300700105. Janssen, T. W. P., Bink, M., Weeda, W. D., Geladé, K., van Mourik, R., Maras, A., and Oosterlaan, J. (2017). Learning curves of theta/beta neurofeedback in children with ADHD. ​Eur. Child Adolesc. Psychiatry​ 26, 573–582. doi:10.1007/s00787-016-0920-8. Kaiser, D. A., and Othmer, S. (2000). Effect of neurofeedback on variables of attention in a large multi-center trial. ​J. Neurother.​ 4, 5–15. doi:10.1300/J184v04n01_02. Keith, J. R., Rapgay, L., Theodore, D., Schwartz, J. M., and Ross, J. L. (2015). An assessment of an automated EEG biofeedback system for attention deficits in a substance use disorders residential treatment setting. ​Psychol. Addict. Behav.​ 29, 17–25. doi:10.1037/adb0000016. Kerson, C., and Collaborative Neurofeedback Group (2013). A proposed multisite double-blind randomized clinical trial of neurofeedback for ADHD: Need, rationale, and strategy. ​J. Atten. Disord.​ 17, 420–436. doi:10.1177/1087054713482580. 14
  15. 15. Kropotov, J. D., Grin-Yatsenko, V. A., Ponomarev, V. A., Chutko, L. S., Yakovenko, E. A., and Nikishena, I. S. (2007). Changes in EEG spectrograms, event-related potentials and event-related desynchronization induced by relative beta training in ADHD children. ​J. Neurother.​ 11, 3–11. doi:10.1300/J184v11n02_02. La Marca, J., and O’Connor, R. (2016). Neurofeedback as an intervention to improve reading achievement in students with attention deficit hyperactivity disorder, inattentive subtype. NR​ 3, 55–77. doi:10.15540/nr.3.2.55. Lee, E.-J., and Jung, C.-H. (2017). Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study. ​Asian J. Psychiatr.​ 25, 16–21. doi:10.1016/j.ajp.2016.09.002. Leins, U., Goth, G., Hinterberger, T., Klinger, C., Rumpf, N., and Strehl, U. (2007). Neurofeedback for children with ADHD: A comparison of SCP and theta/beta protocols. Appl. Psychophysiol. Biofeedback​ 32, 73–88. doi:10.1007/s10484-007-9031-0. Linden, M., Habib, T., and Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. ​Biofeedback Self Regul.​ 21, 35–49. doi:10.1007/bf02214148. Lubar, J. F., Swartwood, M. O., Swartwood, J. N., and O’Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback Self Regul.​ 20, 83–99. doi:10.1007/bf01712768. McReynolds, C., Villalpando, L., and Britt, C. (2018). Using neurofeedback to improve ADHD symptoms in school-aged children. ​NR​ 5, 109–128. doi:10.15540/nr.5.4.109. Medici, D., Bayarri, P. G., Chilet, R. C., Ibánez, J. M., Suarez-Varela, M. M., and Calvo, D. (2018). Neurofeedback versus pharmacological intervention in the treatment of childhood attention deficit/hyperactivity disorder (ADHD): First Spanish clinical neuropsychological study. ​AJAP​ 7, 57–66. doi:10.11648/j.ajap.20180705.11. Meisel, V., Servera, M., Garcia-Banda, G., Cardo, E., and Moreno, I. (2013). Neurofeedback and standard pharmacological intervention in ADHD: A randomized controlled trial with six-month follow-up. ​Biol. Psychol.​ 94, 12–21. doi:10.1016/j.biopsycho.2013.04.015. Moghanloo, M., Aguilar Vafaie, M., Rostami, R., and Farahani, H. (2014). Determination of the effects of neurofeedback training in the neuropsychological rehabilitation in inattentive and combined subtypes of attention deficit/hyperactivity disorder. ​NR​ 1, 131–150. doi:10.15540/nr.1.2.131. 15
  16. 16. Mohagheghi, A., Amiri, S., Moghaddasi Bonab, N., Chalabianloo, G., Noorazar, S. G., Tabatabaei, S. M., and Farhang, S. (2017). A randomized trial of comparing the efficacy of two neurofeedback protocols for treatment of clinical and cognitive symptoms of ADHD: Theta suppression/beta enhancement and theta suppression/alpha enhancement. ​Biomed Res. Int.​ 2017, 3513281. doi:10.1155/2017/3513281. Monastra, V. J., Monastra, D. M., and George, S. (2002). The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. ​Appl. Psychophysiol. Biofeedback​ 27, 231–249. doi:10.1023/a:1021018700609. Moreno-García, I., Meneres-Sancho, S., Camacho-Vara de Rey, C., and Servera, M. (2019). A randomized controlled trial to examine the posttreatment efficacy of neurofeedback, behavior therapy, and pharmacology on ADHD measures. ​J. Atten. Disord.​ 23, 374–383. doi:10.1177/1087054717693371. Nooner, K. B., Leaberry, K. D., Keith, J. R., and Ogle, R. L. (2017). Clinic outcome assessment of a brief course neurofeedback for childhood ADHD symptoms. ​J. Behav. Health Serv. Res.​ 44, 506–514. doi:10.1007/s11414-016-9511-1. Perreau-Linck, E., Lessard, N., Lévesque, J., and Beauregard, M. (2010). Effects of neurofeedback training on inhibitory capacities in ADHD children: A single-blind, randomized, placebo-controlled study. ​J. Neurother.​ 14, 229–242. doi:10.1080/10874208.2010.501514. Pratt, R. R., Abel, H.-H., and Skidmore, J. (1995). The effects of neurofeedback training with background music on EEG patterns of ADD and ADHD children. ​International Journal of Arts Medicine​ 4, 24–31. Rasey, H., Lubar, J. F., McIntyre, A., Zoffuto, A., and Abbott, P. L. (1995). EEG biofeedback for the enhancement of attentional processing in normal college students. ​J. Neurother.​ 1, 15–21. doi:10.1300/J184v01n03_03. Rossiter, Dr. T. R., and La Vaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating attention deficit/hyperactivity disorders. ​J. Neurother.​ 1, 48–59. doi:10.1300/J184v01n01_07. Rossiter, T. (2004). The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: Part II. Replication. ​Appl. Psychophysiol. Biofeedback​ 29, 233–243. doi:10.1007/s10484-004-0383-4. 16
  17. 17. Rossiter, T. R. (1998). Patient-directed neurofeedback for AD/HD. ​J. Neurother.​ 2, 54–64. doi:10.1300/J184v02n04_04. Russell-Chapin, L., Kemmerly, T., Liu, W.-C., Zagardo, M. T., Chapin, T., Dailey, D., and Dinh, D. (2013). The effects of neurofeedback in the default mode network: Pilot study results of medicated children with ADHD. ​J. Neurother.​ 17, 35–42. doi:10.1080/10874208.2013.759017. Ryoo, M., and Son, C. (2015). Effects of neurofeedback training on EEG, continuous performance task (CPT), and ADHD symptoms in ADHD-prone college students. ​J. Korean Acad. Nurs.​ 45, 928–938. doi:10.4040/jkan.2015.45.6.928. Scheinbaum, S., and Newton, C. J. (1995). A controlled study of EEG biofeedback as a treatment for attention-deficit disorders. ​Biofeedback Self Regul​ 20, 295. Shereena, E. A., Gupta, R. K., Bennett, C. N., Sagar, K. J. V., and Rajeswaran, J. (2019). EEG neurofeedback training in children with attention deficit/hyperactivity disorder: A cognitive and behavioral outcome study. ​Clin. EEG Neurosci.​ 50, 242–255. doi:10.1177/1550059418813034. Shin, M.-S., Jeon, H., Kim, M., Hwang, T., Oh, S. J., Hwangbo, M., and Kim, K. J. (2016). Effects of smart-tablet-based neurofeedback training on cognitive function in children with attention problems. ​J. Child Neurol.​ 31, 750–760. doi:10.1177/0883073815620677. Steiner, N. J., Frenette, E. C., Rene, K. M., Brennan, R. T., and Perrin, E. C. (2014). In-school neurofeedback training for ADHD: Sustained improvements from a randomized control trial. ​Pediatrics​ 133, 483–492. doi:10.1542/peds.2013-2059. Sudnawa, K. K., Chirdkiatgumchai, V., Ruangdaraganon, N., Khongkhatithum, C., Udomsubpayakul, U., Jirayucharoensak, S., and Israsena, P. (2018). Effectiveness of neurofeedback versus medication for attention-deficit/hyperactivity disorder. ​Pediatr. Int. 60, 828–834. doi:10.1111/ped.13641. Swingle, P. G. (2002). Parameters associated with rapid neurotherapeutic treatment of common ADD (CADD). ​J. Neurother.​ 5, 73–84. doi:10.1300/J184v05n04_05. Swingle, P. G. (1996). Subthreshold 10-Hz sound suppresses EEG theta: Clinical application for the potentiation of neurotherapeutic treatment of ADD/ADHD. ​J. Neurother.​ 2, 15–22. doi:10.1300/J184v02n01_03. Thompson, L., and Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. ​Appl. Psychophysiol. Biofeedback​ 23, 243–263. doi:10.1023/a:1022213731956. 17
  18. 18. Thompson, M., and Thompson, L. (2006). Improving attention in adults and children: Differing electroencephalography profiles and implications for training. ​Biofeedback​ 34, 99–105. Tinius, T. P., and Tinius, K. A. (2000). Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder. ​J. Neurother.​ 4, 27–44. doi:10.1300/J184v04n02_05. Tsatali, M., Sidiropoulos, S., and Bamidis, P. (2019). Effective neurofeedback applications in anxiety and attention symptomatology in adolescents. ​L’Encéphale​ 45, S80. doi:10.1016/j.encep.2019.04.041. Van Doren, J., Heinrich, H., Bezold, M., Reuter, N., Kratz, O., Horndasch, S., Berking, M., Ros, T., Gevensleben, H., Moll, G. H., et al. (2017). Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects. ​Int. J. Psychophysiol.​ 112, 80–88. doi:10.1016/j.ijpsycho.2016.11.004. Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., and Gruzelier, J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. ​Int. J. Psychophysiol.​ 47, 75–85. doi:10.1016/S0167-8760(02)00091-0. Wang, Z. (2017). Neurofeedback training intervention for enhancing working memory function in attention deficit and hyperactivity disorder (ADHD) Chinese students. ​Neuroquantology 15, 277–283. doi:10.14704/nq.2017.15.2.1073. Warner, D. A., Barabasz, A. F., and Barabasz, M. (2000). The efficacy of Barabasz’s alert hypnosis and neurotherapy on attentiveness, impulsivity and hyperactivity in children with ADHD. ​Child Study Journal​ 30, 43–49. Xiong, Z., Shi, S., and Xu, H. (2005). A controlled study of the effectiveness of EEG biofeedback training on-children with attention deficit hyperactivity disorder. ​J. Huazhong Univ. Sci. Technol. Med. Sci.​ 25, 368–370. doi:10.1007/bf02828171. Yang, P., Ting Li, I., and Ling Liu, T. (2018). Electroencephalogram neurofeedback treatment for Taiwanese children with attention deficit hyperactivity disorder. ​Neuropsychiatry​ 8, 146–154. doi:10.4172/Neuropsychiatry.1000335. CASE REPORTS Alhambra, M. A., Fowler, T. P., and Alhambra, A. A. (1995). EEG biofeedback: A new treatment option for ADD/ADHD. ​J. Neurother.​ 1, 39–43. doi:10.1300/J184v01n02_03. 18
  19. 19. Fleischman, M. J., and Othmer, S. (2006). Case study: Improvements in IQ score and maintenance of gains following EEG biofeedback with mildly developmentally delayed twins. ​J. Neurother.​ 9, 35–46. doi:10.1300/J184v09n04_03. Jacobs, E. H. (2006). Neurofeedback treatment of two children with learning, attention, mood, social, and developmental deficits. ​J. Neurother.​ 9, 55–70. doi:10.1300/J184v09n04_06. Rossiter, T. (2002). Neurofeedback for AD/HD: A ratio feedback case study and tutorial. ​J. Neurother.​ 6, 9–35. doi:10.1300/J184v06n03_03. Tansey, M. A. (1993). Ten-year stability of EEG biofeedback results for a hyperactive boy who failed fourth grade perceptually impaired class. ​Biofeedback Self Regul.​ 18, 33–44. doi:10.1007/bf00999512. Tansey, M. A., and Bruner, R. L. (1983). EMG and EEG biofeedback training in the treatment of a 10-year-old hyperactive boy with a developmental reading disorder. ​Biofeedback Self Regul.​ 8, 25–37. doi:10.1007/bf01000534. Wadhwani, S., Radvanski, D. C., and Carmody, D. P. (1998). Neurofeedback training in a case of attention deficit hyperactivity disorder. ​J. Neurother.​ 3, 42–49. doi:10.1300/J184v03n01_05. REVIEWS Arns, M. (2012). EEG-based personalized medicine in ADHD: Individual alpha peak frequency as an endophenotype associated with nonresponse. ​J. Neurother.​ 16, 123–141. doi:10.1080/10874208.2012.677664. Arns, M., Batail, J. M., Bioulac, S., Congedo, M., Daudet, C., Drapier, D., Fovet, T., Jardri, R., Le-Van-Quyen, M., Lotte, F., et al. (2017). Neurofeedback: One of today’s techniques in psychiatry? ​Encephale​ 43, 135–145. doi:10.1016/j.encep.2016.11.003. Arns, M., Conners, C. K., and Kraemer, H. C. (2013). A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. ​J. Atten. Disord.​ 17, 374–383. doi:10.1177/1087054712460087. Arns, M., Heinrich, H., and Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. ​Biol. Psychol.​ 95, 108–115. doi:10.1016/j.biopsycho.2013.11.013. Arns, M., and Kenemans, J. L. (2014). Neurofeedback in ADHD and insomnia: Vigilance stabilization through sleep spindles and circadian networks. ​Neurosci. Biobehav. Rev. 44, 183–194. doi:10.1016/j.neubiorev.2012.10.006. 19
  20. 20. Arns, M., de Ridder, S., Strehl, U., Breteler, M., and Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. ​Clin. EEG Neurosci.​ 40, 180–189. doi:10.1177/155005940904000311. Barabasz, A., and Barabasz, M. (1996). “Neurotherapy and alert hypnosis in the treatment of attention deficit hyperactivity disorder.,” in ​Casebook of Clinical Hypnosis.​, eds. S. J. Lynn, I. Kirsch, and J. W. Rhue (Washington: American Psychological Association), 271–291. doi:10.1037/11090-013. Barabasz, A., and Barabasz, M. (2000). Treating AD/HD with hypnosis and neurotherapy. ​Child Study Journal​ 30, 25–32. Barth, B., and Ehlis, A.-C. (2019). Neurofeedback in adult attention-deficit/hyperactivity disorder: State of research and practical implications [Neurofeedback bei adulter Aufmerksamkeitsdefizit‑/Hyperaktivitätsstörung: Stand der Forschung und Implikationen für die Anwendung]. ​Psychotherapeut​ 64, 194–201. doi:10.1007/s00278-019-0350-4. Bussalb, A., Congedo, M., Barthélemy, Q., Ojeda, D., Acquaviva, E., Delorme, R., and Mayaud, L. (2019). Clinical and experimental factors influencing the efficacy of neurofeedback in ADHD: A meta-analysis. ​Front. Psychiatry​ 10, 35. doi:10.3389/fpsyt.2019.00035. Butnik, S. M. (2005). Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. ​J. Clin. Psychol.​ 61, 621–625. doi:10.1002/jclp.20124. Cortese, S., Ferrin, M., Brandeis, D., Holtmann, M., Aggensteiner, P., Daley, D., Santosh, P., Simonoff, E., Stevenson, J., Stringaris, A., et al. (2016). Neurofeedback for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. ​J. Am. Acad. Child Adolesc. Psychiatry​ 55, 444–455. doi:10.1016/j.jaac.2016.03.007. Enriquez-Geppert, S., Smit, D., Pimenta, M. G., and Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. ​Curr. Psychiatry Rep. 21, 46. doi:10.1007/s11920-019-1021-4. Fox, D. J., Tharp, D. F., and Fox, L. C. (2005). Neurofeedback: An alternative and efficacious treatment for attention deficit hyperactivity disorder. ​Appl. Psychophysiol. Biofeedback 30, 365–373. doi:10.1007/s10484-005-8422-3. Gruzelier, J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. ​Cogn. Process.​ 10 Suppl 1, S101-9. doi:10.1007/s10339-008-0248-5. 20
  21. 21. Gruzelier, J., and Egner, T. (2005). Critical validation studies of neurofeedback. ​Child Adolesc. Psychiatr. Clin. N. Am.​ 14, 83–104, vi. doi:10.1016/j.chc.2004.07.002. Gruzelier, J., Egner, T., and Vernon, D. (2006). “Validating the efficacy of neurofeedback for optimising performance,” in ​Event-Related Dynamics of Brain Oscillations​ Progress in Brain Research. (Elsevier), 421–431. doi:10.1016/S0079-6123(06)59027-2. Hirshberg, L. M. (2007). Place of electroencephalograpic biofeedback for attention-deficit/hyperactivity disorder. ​Expert Rev. Neurother.​ 7, 315–319. doi:10.1586/14737175.7.4.315. Hodgson, K., Hutchinson, A. D., and Denson, L. (2014). Nonpharmacological treatments for ADHD: A meta-analytic review. ​J. Atten. Disord.​ 18, 275–282. doi:10.1177/1087054712444732. Holtmann, M., Stadler, C., Leins, U., Strehl, U., Birbaumer, N., and Poustka, F. (2004). Neurofeedback for the treatment of attention-deficit/hyperactivity disorder (ADHD) in childhood and adolescence. ​Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie​ 32, 187–200. doi:10.1024/1422-4917.32.3.187. Kirk, L. (2007). “Neurofeedback protocols for subtypes of attention deficit/hyperactivity disorder,” in ​Handbook of neurofeedback: dynamics and clinical applications​, ed. J. Evans (CRC Press), 267–300. doi:10.1201/b14658-16. Krell, J., Todd, A., and Dolecki, P. K. (2019). Bridging the gap between theory and practice in neurofeedback training for attention. ​Mind Brain Education​ 13, 246–260. doi:10.1111/mbe.12220. La Marca, J. P. (2017). Historical overview of attention deficit-hyperactivity disorder and neurofeedback: Implications for academic achievement, assessment, and intervention in schools. ​Contemp. Sch. Psychol.​ 22, 1–17. doi:10.1007/s40688-017-0155-9. Lambez, B., Harwood-Gross, A., Golumbic, E. Z., and Rassovsky, Y. (2020). Non-pharmacological interventions for cognitive difficulties in ADHD: A systematic review and meta-analysis. ​J. Psychiatr. Res.​ 120, 40–55. doi:10.1016/j.jpsychires.2019.10.007. Lofthouse, N., Arnold, L. E., Hersch, S., Hurt, E., and DeBeus, R. (2012). A review of neurofeedback treatment for pediatric ADHD. ​J. Atten. Disord.​ 16, 351–372. doi:10.1177/1087054711427530. Loo, S. K., and Barkley, R. A. (2005). Clinical utility of EEG in attention deficit hyperactivity disorder. ​Appl. Neuropsychol.​ 12, 64–76. doi:10.1207/s15324826an1202_2. 21
  22. 22. Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. ​Biofeedback Self Regul.​ 16, 201–225. doi:10.1007/BF01000016. Lubar, J. F. (1997). Neocortical dynamics: Implications for understanding the role of neurofeedback and related techniques for the enhancement of attention. ​Applied Psychophysiology and Biofeedback​ 22, 111–126. Lubar, J. F. (2003). “Neurofeedback for the management of attention deficit disorders,” in Biofeedback: A Practitioner’s Guide​, eds. M. S. Schwartz and F. Andrasik (New York: Guilford Press), 409–437. Lubar, J. F. (1995). “Neurofeedback for the management of attention-deficit/hyperactivity disorders,” in ​Biofeedback: A Practitioner’s Guide​, ed. M. S. Schwartz (New York: The Guilford Press), 493–522. Micoulaud-Franchi, J. A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., and Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. ​Neurophysiol. Clin.​ 45, 423–433. doi:10.1016/j.neucli.2015.10.077. Micoulaud-Franchi, J.-A., Geoffroy, P. A., Fond, G., Lopez, R., Bioulac, S., and Philip, P. (2014). EEG neurofeedback treatments in children with ADHD: An updated meta-analysis of randomized controlled trials. ​Front. Hum. Neurosci.​ 8, 906. doi:10.3389/fnhum.2014.00906. Monastra, V. J. (2005). Electroencephalographic biofeedback (neurotherapy) as a treatment for attention deficit hyperactivity disorder: Rationale and empirical foundation. ​Child Adolesc. Psychiatr. Clin. N. Am.​ 14, 55–82, vi. doi:10.1016/j.chc.2004.07.004. Moriyama, T. S., Polanczyk, G., Caye, A., Banaschewski, T., Brandeis, D., and Rohde, L. A. (2012). Evidence-based information on the clinical use of neurofeedback for ADHD. Neurotherapeutics​ 9, 588–598. doi:10.1007/s13311-012-0136-7. Narimani, M., Ensafi, E., and Mohajeri Aval, N. (2018). Effectiveness of neurofeedback treatment on adult ADHD: A meta-analysis. ​PCP​ 6, 73–82. doi:10.29252/nirp.jpcp.6.2.73. Nash, J. K. (2000). Treatment of attention deficit hyperactivity disorder with neurotherapy. ​Clin Electroencephalogr​ 31, 30–37. doi:10.1177/155005940003100109. Ordikhani-Seyedlar, M., and Lebedev, M. A. (2017). “Controlling attention with neurofeedback,” in ​The Physics of the Mind and Brain Disorders​ Springer Series in Cognitive and Neural 22
  23. 23. Systems., eds. I. Opris and M. F. Casanova (Cham: Springer International Publishing), 545–572. doi:10.1007/978-3-319-29674-6_25. Pigott, H. E., and Cannon, R. (2014a). Neurofeedback is the best available first-line treatment for ADHD: What is the evidence for this claim? ​NeuroRegulation​ 1, 4–23. doi:10.15540/nr.1.1.4. Pigott, H. E., and Cannon, R. (2014b). Neurofeedback requires better evidence of efficacy before it should be considered a legitimate treatment for ADHD: What is the evidence for this claim? ​NeuroRegulation​ 1, 25–45. doi:10.15540/nr.1.1.25. Pigott, H. E., Cannon, R., and Trullinger, M. (2018). The fallacy of sham-controlled neurofeedback trials: A reply to Thibault and colleagues (2018). ​J. Atten. Disord.​, 1087054718790802. doi:10.1177/1087054718790802. Razoki, B. (2018). Neurofeedback versus psychostimulants in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: A systematic review. Neuropsychiatr. Dis. Treat.​ 14, 2905–2913. doi:10.2147/NDT.S178839. Riesco-Matías, P., Yela-Bernabé, J. R., Crego, A., and Sánchez-Zaballos, E. (2019). What do meta-analyses have to say about the efficacy of neurofeedback applied to children with ADHD? Review of previous meta-analyses and a new meta-analysis. ​J. Atten. Disord.​, 1087054718821731. doi:10.1177/1087054718821731. Ros, T., J Baars, B., Lanius, R. A., and Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. ​Front. Hum. Neurosci.​ 8, 1008. doi:10.3389/fnhum.2014.01008. Rossiter, T. (2004). The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: Part I. Review of methodological issues. ​Appl. Psychophysiol. Biofeedback​ 29, 95–112. doi:10.1023/B:APBI.0000026636.13180.b6. Ryana, M., Brownb, T., Vollebregtc, M. A., and Arnse, M. (2019). What’s sleep got to do with it? Circadian rhythm sleep disorder, ADHD and neurofeedback. ​APJNT​ 1, 85–98. Sherlin, L., Arns, M., Lubar, J., and Sokhadze, E. (2010). A position paper on neurofeedback for the treatment of ADHD. ​J. Neurother.​ 14, 66–78. doi:10.1080/10874201003773880. Sonuga-Barke, E. J. S., Brandeis, D., Cortese, S., Daley, D., Ferrin, M., Holtmann, M., Stevenson, J., Danckaerts, M., van der Oord, S., Döpfner, M., et al. (2013). Nonpharmacological interventions for ADHD: Systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. ​Am. J. Psychiatry 170, 275–289. doi:10.1176/appi.ajp.2012.12070991. 23
  24. 24. Stankus, T. (2008). Can the brain be trained? Comparing the literature on the use of EEG biofeedback/neurofeedback as an alternative or complementary therapy for attention deficit hyperactivity disorder (ADHD). ​Behav. Soc. Sci. Librar.​ 26, 20–56. doi:10.1080/01639260802031556. Thompson, M., and Thompson, L. (2015). ​The Neurofeedback Book: An Introduction to Basic Concepts in Applied Psychophysiology​. 2nd ed. Wheat Ridge, CO: The Association for Applied Psychophysiology and Biofeedback. Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M. A., Strehl, U., and K Loo, S. (2019). Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry​ 28, 293–305. doi:10.1007/s00787-018-1121-4. Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., and Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. ​J. Neurother.​ 13, 214–227. doi:10.1080/10874200903334397. Vernon, D., Frick, A., and Gruzelier, J. (2004). Neurofeedback as a treatment for ADHD: A methodological review with implications for future research. ​J. Neurother.​ 8, 53–82. doi:10.1300/J184v08n02_04. Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. ​Appl. Psychophysiol. Biofeedback​ 30, 347–364. doi:10.1007/s10484-005-8421-4. Vollebregt, M. A., van Dongen-Boomsma, M., Buitelaar, J. K., and Slaats-Willemse, D. (2014). Does EEG-neurofeedback improve neurocognitive functioning in children with attention-deficit/hyperactivity disorder? A systematic review and a double-blind placebo-controlled study. ​J. Child Psychol. Psychiatry​ 55, 460–472. doi:10.1111/jcpp.12143. Williams, J. M. (2010). Does neurofeedback help reduce attention-deficit hyperactivity disorder? J. Neurother.​ 14, 261–279. doi:10.1080/10874208.2010.523331. Yan, L., Wang, S., Yuan, Y., and Zhang, J. (2019). Effects of neurofeedback versus methylphenidate for the treatment of ADHD: Systematic review and meta-analysis of head-to-head trials. ​Evid. Based Ment. Health​ 22, 111–117. doi:10.1136/ebmental-2019-300088. 24
  25. 25. Addictive Disorders STUDIES Burkett, V. S., Cummins, J. M., Dickson, R. M., and Skolnick, M. (2005). An open clinical trial utilizing real-time EEG operant conditioning as an adjunctive therapy in the treatment of crack cocaine dependence. ​J. Neurother.​ 9, 27–47. doi:10.1300/J184v09n02_03. Callaway, T. G., and Bodenhamer-Davis, E. (2008). Long-term follow-up of a clinical replication of the Peniston protocol for chemical dependency. ​J. Neurother.​ 12, 243–259. doi:10.1080/10874200802502060. Dalkner, N., Unterrainer, H. F., Wood, G., Skliris, D., Holasek, S. J., Gruzelier, J. H., and Neuper, C. (2017). Short-term beneficial effects of 12 sessions of neurofeedback on avoidant personality accentuation in the treatment of alcohol use disorder. ​Front. Psychol.​ 8, 1688. doi:10.3389/fpsyg.2017.01688. Dehghani-Arani, F., Rostami, R., and Nadali, H. (2013). Neurofeedback training for opiate addiction: Improvement of mental health and craving. ​Appl. Psychophysiol. Biofeedback 38, 133–141. doi:10.1007/s10484-013-9218-5. Dehghani-Arani, F., Rostami, R., and Nostratabadi, M. (2010). Effectiveness of neurofeedback training as a treatment for opioid-dependent patients. ​Clin. EEG Neurosci.​ 41, 170–177. doi:10.1177/155005941004100313. Fielenbach, S., Donkers, F. C. L., Spreen, M., and Bogaerts, S. (2019). The ability of forensic psychiatric patients with substance use disorder to learn neurofeedback. ​Int. J. Forensic Ment. Health​ 18, 187–199. doi:10.1080/14999013.2018.1485187. Fielenbach, S., Donkers, F. C., Spreen, M., and Bogaerts, S. (2018). Effects of a theta/sensorimotor rhythm neurofeedback training protocol on measures of impulsivity, drug craving, and substance abuse in forensic psychiatric patients with substance abuse: Randomized controlled trial. ​JMIR Ment Health​ 5, e10845. doi:10.2196/10845. Hashemian, P. (2015). The effectiveness of neurofeedback therapy in craving of methamphetamine use. ​Open J. Psychiatr.​ 05, 177–179. doi:10.4236/ojpsych.2015.52020. Horrell, T., El-Baz, A., Baruth, J., Tasman, A., Sokhadze, G., Stewart, C., and Sokhadze, E. (2010). Neurofeedback effects on evoked and induced EEG gamma band reactivity to 25
  26. 26. drug-related cues in cocaine addiction. ​J. Neurother.​ 14, 195–216. doi:10.1080/10874208.2010.501498. Keith, J. R., Rapgay, L., Theodore, D., Schwartz, J. M., and Ross, J. L. (2015). An assessment of an automated EEG biofeedback system for attention deficits in a substance use disorders residential treatment setting. ​Psychol. Addict. Behav.​ 29, 17–25. doi:10.1037/adb0000016. Kelley, M. J. (1997). “Native Americans, neurofeedback, and substance abuse theory”. Three year outcome of alpha/theta neurofeedback training in the treatment of problem drinking among Dine’ (Navajo) people. ​J. Neurother.​ 2, 24–60. doi:10.1300/J184v02n03_03. Lackner, N., Unterrainer, H. F., Skliris, D., Wood, G., Wallner-Liebmann, S. J., Neuper, C., and Gruzelier, J. H. (2016). The effectiveness of visual short-time neurofeedback on brain activity and clinical characteristics in alcohol use disorders: Practical issues and results. Clin. EEG Neurosci.​ 47, 188–195. doi:10.1177/1550059415605686. Peniston, E. G., and Kulkosky, P. J. (1989). Alpha-theta brainwave training and beta-endorphin levels in alcoholics. ​Alcohol. Clin. Exp. Res.​ 13, 271–279. doi:10.1111/j.1530-0277.1989.tb00325.x. Peniston, E. G., and Kulkosky, P. J. (1990). Alcoholic personality and alpha-theta brainwave training. ​Medical Psychotherapy: An International Journal​ 3, 37–55. Rostami, R., and Dehghani-Arani, F. (2015). Neurofeedback training as a new method in treatment of crystal methamphetamine dependent patients: A preliminary study. ​Appl. Psychophysiol. Biofeedback​ 40, 151–161. doi:10.1007/s10484-015-9281-1. Russo, G., and Novian, D. A. (2014). A research analysis of neurofeedback protocols for PTSD and alcoholism. ​NR​ 1, 183–186. doi:10.15540/nr.1.2.183. Saxby, E., and Peniston, E. G. (1995). Alpha-theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. ​J. Clin. Psychol.​ 51, 685–693. doi:10.1002/1097-4679(199509)51:5<685::AID-JCLP2270510514>3.0.CO;2-K. Scott, W. C., Kaiser, D., Othmer, S., and Sideroff, S. I. (2005). Effects of an EEG biofeedback protocol on a mixed substance abusing population. ​Am. J. Drug Alcohol Abuse​ 31, 455–469. doi:10.1081/ada-200056807. Scott, W., and Kaiser, D. (1998). Augmenting chemical dependency treatment with neurofeedback training. ​Journal of Neurotherapy​ 3, 66. 26
  27. 27. Trudeau, D. L. (2008). Brainwave biofeedback for addictive disorder. ​J. Neurother.​ 12, 181–183. doi:10.1080/10874200802502391. Tuab, E., Steiner, S. S., Weingarten, E., and Walton, K. G. (1994). Effectiveness of broad spectrum approaches to relapse prevention in severe alcoholism: A long-term, randomized, controlled trial of transcendental meditiation, EMG biofeedback and electronic neurotherapy. ​Alcohol. Treat. Q.​ 11, 187–220. doi:10.1300/J020v11n01_06. CASE REPORTS Unterrainer, H. F., Chen, M. J. L., and Gruzelier, J. H. (2014). EEG-neurofeedback and psychodynamic psychotherapy in a case of adolescent anhedonia with substance misuse: mood/theta relations. ​Int. J. Psychophysiol.​ 93, 84–95. doi:10.1016/j.ijpsycho.2013.03.011. REVIEWS Gruzelier, J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. ​Cogn. Process.​ 10 Suppl 1, S101-9. doi:10.1007/s10339-008-0248-5. Micoulaud-Franchi, J. A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., and Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. ​Neurophysiol. Clin.​ 45, 423–433. doi:10.1016/j.neucli.2015.10.077. Schmidt, J., Kärgel, C., and Opwis, M. (2017). Neurofeedback in substance use and overeating: Current applications and future directions. ​Curr. Addict. Rep.​ 4, 116–131. doi:10.1007/s40429-017-0137-z. Sokhadze, T. M., Cannon, R. L., and Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy, and recommendations for further research. ​Appl. Psychophysiol. Biofeedback​ 33, 1–28. doi:10.1007/s10484-007-9047-5. Sokhadze, T. M., Stewart, C. M., and Hollifield, M. (2007). Integrating cognitive neuroscience research and cognitive behavioral treatment with neurofeedback Therapy in drug addiction comorbid with posttraumatic stress disorder: A conceptual review. ​J. Neurother.​ 11, 13–44. doi:10.1300/J184v11n02_03. 27
  28. 28. Sunder, K. R., and Bohnen, J. L. (2017). The progression of neurofeedback: An evolving paradigm in addiction treatment and relapse prevention. ​MOJAMT​ 3, 75–78. doi:10.15406/mojamt.2017.03.00037. Trudeau, D. L. (2005). Applicability of brain wave biofeedback to substance use disorder in adolescents. ​Child Adolesc. Psychiatr. Clin. N. Am.​ 14, 125–36, vii. doi:10.1016/j.chc.2004.07.006. Anxiety STUDIES Agnihotri, H., Paul, M., and Sandhu, J. S. (2007). Biofeedback approach in the treatment of generalized anxiety disorder. ​Iranian Journal of Psychiatry​ 2, 90–95. Available at: http://ijps.tums.ac.ir/index.php/ijps/article/view/444 [Accessed March 17, 2020]. Agnihotri, H., Paul, M., and Sandhu, J. S. (2008). The comparative efficacy of two biofeedback techniques in the treatment of generalized anxiety disorder. ​Pakistan Journal of Social and Clinical Psychology​ 6, 35–46. Coger, R., and Werbach, M. (1975). Attention, anxiety and the effects of learned enhancement of EEG alpha in chronic pain: A pilot study in biofeedback. ​Pain Research and Treatment​, 297–303. Dadashi, M., Birashk, B., Taremian, F., Asgarnejad, A. A., and Momtazi, S. (2015). Effects of increase in amplitude of occipital alpha & theta brain waves on global functioning level of patients with GAD. ​Basic Clin. Neurosci.​ 6, 14–20. Egner, T., and Gruzelier, J. H. (2003). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. ​Neuroreport​ 14, 1221–1224. doi:10.1097/01.wnr.0000081875.45938.d1. Garrett, B. L., and Silver, M. P. (1976). “The use of EMG and alpha biofeedback to relieve test anxiety in college students,” in ​Biofeedback, Behavior Therapy, and Hypnosis​, ed. I. Wickramasekera (Chicago: Nelson–Hall). 28
  29. 29. Hardt, J. V., and Kamiya, J. (1978). Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. ​Science​ 201, 79–81. doi:10.1126/science.663641. Holmes, D. S., Burish, T. G., and Frost, R. O. (1980). Effects of instructions and biofeedback on EEG-alpha production and the effects of EEG-alpha biofeedback training for controlling arousal in a subsequent stressful situation. ​J. Res. Pers.​ 14, 212–223. doi:10.1016/0092-6566(80)90029-X. Hsueh, J.-J., Chen, T.-S., Chen, J.-J., and Shaw, F.-Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. ​Hum. Brain Mapp.​ 37, 2662–2675. doi:10.1002/hbm.23201. Huang-Storms, L., Bodenhamer-Davis, E., Davis, R., and Dunn, J. (2007). QEEG-guided neurofeedback for children with histories of abuse and neglect: Neurodevelopmental rationale and pilot study. ​J. Neurother.​ 10, 3–16. doi:10.1300/J184v10n04_02. Kayiran, S., Dursun, E., Ermutlu, N., Dursun, N., and Karamürsel, S. (2007). Neurofeedback in fibromyalgia syndrome. ​Agri​ 19, 47–53. Keller, I. (2001). Neurofeedback therapy of attention deficits in patients with traumatic brain injury. ​J. Neurother.​ 5, 19–32. doi:10.1300/J184v05n01_03. Lu, Y., Wang, C., Su, L., Ma, Z., Li, S., and Fan, Y. (2017). Effects of neurofeedback on panic disorder patients’ anxiety. ​Neuroquantology​ 15, 172–178. doi:10.14704/nq.2017.15.3.1083. Peper, E., Lee, S., Harvey, R., and Lin, I.-M. (2016). Breathing and math performance: Implications for performance and neurotherapy. ​NR​ 3, 142–149. doi:10.15540/nr.3.4.142. Rice, K. M., Blanchard, E. B., and Purcell, M. (1993). Biofeedback treatments of generalized anxiety disorder: Preliminary results. ​Biofeedback Self Regul.​ 18, 93–105. doi:10.1007/bf01848110. Saxby, E., and Peniston, E. G. (1995). Alpha-theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. ​J. Clin. Psychol.​ 51, 685–693. doi:10.1002/1097-4679(199509)51:5<685::AID-JCLP2270510514>3.0.CO;2-K. Schoneveld, E. A., Malmberg, M., Lichtwarck-Aschoff, A., Verheijen, G. P., Engels, R. C. M. E., and Granic, I. (2016). A neurofeedback video game (MindLight) to prevent anxiety in 29
  30. 30. children: A randomized controlled trial. ​Comput. Human Behav.​ 63, 321–333. doi:10.1016/j.chb.2016.05.005. Thompson, M., and Thompson, L. (2006). Improving attention in adults and children: Differing electroencephalography profiles and implications for training. ​Biofeedback​ 34, 99–105. Tsatali, M., Sidiropoulos, S., and Bamidis, P. (2019). Effective neurofeedback applications in anxiety and attention symptomatology in adolescents. ​L’Encéphale​ 45, S80. doi:10.1016/j.encep.2019.04.041. Vanathy, S., Sharma, P. S., and Kumar, K. B. (1998). The efficacy of alpha and theta neurofeedback training in treatment of generalized anxiety disorder. ​Indian Journal of Clinical Psychology​ 25, 136–143. Wang, S., Zhao, Y., Chen, S., Lin, G., Sun, P., and Wang, T. (2013). EEG biofeedback improves attentional bias in high trait anxiety individuals. ​BMC Neurosci.​ 14, 115. doi:10.1186/1471-2202-14-115. Watson, C. G., Herder, J., and Passini, F. T. (1978). Alpha biofeedback therapy in alcoholics: An 18-month follow-up. ​J. Clin. Psychol.​ 34, 765–769. doi:10.1002/1097-4679(197807)34:3<765::aid-jclp2270340339>3.0.co;2-5. White, E. K., Groeneveld, K. M., Tittle, R. K., Bolhuis, N. A., Martin, R. E., Royer, T. G., and Fotuhi, M. (2017). Combined neurofeedback and heart rate variability training for individuals with symptoms of anxiety and depression: A retrospective study. ​NR​ 4, 37–55. doi:10.15540/nr.4.1.37. Zhang, P., and Cheng, L. (2017). A randomized controlled trial of a neurofeedback-based training for improvement in social phobia disorder. ​Neuroquantology​ 15. doi:10.14704/nq.2017.15.4.1136. CASE REPORTS Askovic, M., Watters, A. J., Aroche, J., and Harris, A. W. F. (2017). Neurofeedback as an adjunct therapy for treatment of chronic posttraumatic stress disorder related to refugee trauma and torture experiences: Two case studies. ​Australas. Psychiatry​ 25, 358–363. doi:10.1177/1039856217715988. Moradi, A., Pouladi, F., Pishva, N., Rezaei, B., Torshabi, M., and Mehrjerdi, Z. A. (2011). Treatment of anxiety disorder with neurofeedback: Case study. ​Procedia - Social and Behavioral Sciences​ 30, 103–107. doi:10.1016/j.sbspro.2011.10.021. 30
  31. 31. Rozelle, G. R., and Budzynski, T. H. (1995). Neurotherapy for stroke rehabilitation: A single case study. ​Biofeedback Self Regul.​ 20, 211–228. doi:10.1007/bf01474514. Thomas, J. E., and Sattlberger, E. (1997). Treatment of chronic anxiety disorder with neurotherapy. ​J. Neurother.​ 2, 14–19. doi:10.1300/J184v02n02_03. REVIEWS Gruzelier, J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. ​Cogn. Process.​ 10 Suppl 1, S101-9. doi:10.1007/s10339-008-0248-5. Hammond, D. C. (2005a). Neurofeedback with anxiety and affective disorders. ​Child Adolesc. Psychiatr. Clin. N. Am.​ 14, 105–23, vii. doi:10.1016/j.chc.2004.07.008. Hammond, D. C. (2005b). Neurofeedback treatment of depression and anxiety. ​J. Adult Dev. 12, 131–137. doi:10.1007/s10804-005-7029-5. Hirshberg, L. M. (2007). Place of electroencephalograpic biofeedback for attention-deficit/hyperactivity disorder. ​Expert Rev. Neurother.​ 7, 315–319. doi:10.1586/14737175.7.4.315. Micoulaud-Franchi, J. A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., and Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. ​Neurophysiol. Clin.​ 45, 423–433. doi:10.1016/j.neucli.2015.10.077. Moore, N. C. (2000). A review of EEG biofeedback treatment of anxiety disorders. ​Clinical Electroencephalography​ 31, 1–6. doi:10.1177/155005940003100105. Tolin, D. F., Davies, C. D., Moskow, D. M., and Hofmann, S. G. (2020). Biofeedback and neurofeedback for anxiety disorders: A quantitative and qualitative systematic review. Adv. Exp. Med. Biol.​ 1191, 265–289. doi:10.1007/978-981-32-9705-0_16. 31
  32. 32. Autism Spectrum Disorders (ASD) STUDIES Coben, R., and Padolsky, I. (2007). Assessment-guided neurofeedback for autistic spectrum disorder. ​J. Neurother.​ 11, 5–23. doi:10.1300/J184v11n01_02. Datko, M., Pineda, J. A., and Müller, R.-A. (2018). Positive effects of neurofeedback on autism symptoms correlate with brain activation during imitation and observation. ​Eur. J. Neurosci.​ 47, 579–591. doi:10.1111/ejn.13551. Drysdale, M. T. B., Martinez, Y. J., and Thompson, L. (2012). The effects of humorous literature on emotion: A pilot project comparing children with Asperger’s syndrome before and after neurofeedback training and controls. ​J. Neurother.​ 16, 196–209. doi:10.1080/10874208.2012.705758. Friedrich, E. V. C., Sivanathan, A., Lim, T., Suttie, N., Louchart, S., Pillen, S., and Pineda, J. A. (2015). An effective neurofeedback intervention to improve social interactions in children with autism spectrum disorder. ​J. Autism Dev. Disord.​ 45, 4084–4100. doi:10.1007/s10803-015-2523-5. Jarusiewicz, B. (2002). Efficacy of neurofeedback for children in the autistic spectrum: A pilot study. ​J. Neurother.​ 6, 39–49. doi:10.1300/J184v06n04_05. Knezevic, B., Thompson, L., and Thompson, M. (2010). Pilot project to ascertain the utility of Tower of London test to assess outcomes of neurofeedback in clients with Asperger’s syndrome. ​J. Neurother.​ 14, 3–19. doi:10.1080/10874200903543922. Kouijzer, M. E. J., de Moor, J. M. H., Gerrits, B. J. L., Buitelaar, J. K., and van Schie, H. T. (2009). Long-term effects of neurofeedback treatment in autism. ​Res. Autism Spectr. Disord.​ 3, 496–501. doi:10.1016/j.rasd.2008.10.003. Pineda, J. A., Brang, D., Hecht, E., Edwards, L., Carey, S., Bacon, M., Futagaki, C., Suk, D., Tom, J., Birnbaum, C., et al. (2008). Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. ​Res. Autism Spectr. Disord.​ 2, 557–581. doi:10.1016/j.rasd.2007.12.003. Ryan, A., and Files, N. (2019). The efficacy of neurofeedback and traditional therapies with autism spectrum disorder in a clinic setting. ​APJN​ 1, 14–20. 32
  33. 33. Steiner, N. J., Frenette, E., Hynes, C., Pisarik, E., Tomasetti, K., Perrin, E. C., and Rene, K. (2014). A pilot feasibility study of neurofeedback for children with autism. ​Appl. Psychophysiol. Biofeedback​ 39, 99–107. doi:10.1007/s10484-014-9241-1. Wang, Y., Sokhadze, E. M., El-Baz, A. S., Li, X., Sears, L., Casanova, M. F., and Tasman, A. (2015). Relative power of specific EEG bands and their ratios during neurofeedback training in children with autism spectrum disorder. ​Front. Hum. Neurosci.​ 9, 723. doi:10.3389/fnhum.2015.00723. CASE REPORTS Legarda, S. B., McMahon, D., Othmer, S., and Othmer, S. (2011). Clinical neurofeedback: Case studies, proposed mechanism, and implications for pediatric neurology practice. ​J. Child Neurol.​ 26, 1045–1051. doi:10.1177/0883073811405052. Sichel, A. G., Fehmi, L. G., and Goldstein, D. M. (1995). Positive outcome with neurofeedback treatment in a case of mild autism. ​J. Neurother.​ 1, 60–64. doi:10.1300/J184v01n01_08. REVIEWS Coben, R. (2013). “Neurofeedback for autistic disorders: Emerging empirical evidence,” in Imaging the Brain in Autism​, eds. M. F. Casanova, A. S. El-Baz, and J. S. Suri (New York, NY: Springer New York), 107–134. doi:10.1007/978-1-4614-6843-1_6. Frye, R. E., Rossignol, D., Casanova, M. F., Brown, G. L., Martin, V., Edelson, S., Coben, R., Lewine, J., Slattery, J. C., Lau, C., et al. (2013). A review of traditional and novel treatments for seizures in autism spectrum disorder: Findings from a systematic review and expert panel. ​Front. Public Health​ 1, 31. doi:10.3389/fpubh.2013.00031. Jarusiewicz, B. (2007). “Use of neurofeedback with autistic spectrum disorders,” in ​Handbook of Neurofeedback: Dynamics and Clinical Applications​, ed. J. Evans (CRC Press), 321–340. doi:10.1201/b14658-18. Micoulaud-Franchi, J. A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., and Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. ​Neurophysiol. Clin.​ 45, 423–433. doi:10.1016/j.neucli.2015.10.077. 33
  34. 34. Chronic Fatigue Syndrome and Fibromyalgia STUDIES Billiot, K. M., Budzynski, T. H., and Andrasik, F. (1997). EEG patterns and chronic fatigue syndrome. ​J. Neurother.​ 2, 20–30. doi:10.1300/J184v02n02_04. CASE REPORTS Hammond, D. C. (2001). Treatment of chronic fatigue with neurofeedback and self-hypnosis. NeuroRehabilitation​ 16, 295–300. James, L. C., and Folen, R. A. (1996). EEG biofeedback as a treatment for chronic fatigue syndrome: a controlled case report. ​Behav. Med.​ 22, 77–81. doi:10.1080/08964289.1996.9933767. Kayiran, S., Dursun, E., Ermutlu, N., Dursun, N., and Karamürsel, S. (2007). Neurofeedback in fibromyalgia syndrome. ​Agri​ 19, 47–53. REVIEWS Tansey, M. (1993). EEG neurofeedback and chronic fatigue syndrome: New findings with respect to diagnosis and treatment. ​The CFIDS Chronicle, 30​ 32. 34
  35. 35. Cognitive Decline Note: These references include studies relevant to individuals identified as having cognitive decline or studies in healthy adults with direct implications for adults with cognitive decline. For studies relevant to enhancing cognitive function in healthy individuals, see the separate Peak Performance​ bibliography. STUDIES Berman, M. H., and Frederick, J. A. (2009). Efficacy of neurofeedback for executive and memory function in dementia. ​Alzheimers Dement​ 5, e8. doi:10.1016/j.jalz.2009.07.046. Bielas, J., and Michalczyk, Ł. (2020). Beta neurofeedback training improves attentional control in the elderly. ​Psychol. Rep.​, 33294119900348. doi:10.1177/0033294119900348. Bobori, C., and Plerou, A. (2019). Memory enhancement with the use of neurofeedback and CVLT repetition techniques in the case of anterograde amnesia. ​J Neurosci Neurosurg 2. Budzynski, H., and Tang, H.-Y. (2007). “Brain brightening: Restoring the aging mind,” in Handbook of Neurofeedback: Dynamics and Clinical Applications​, ed. J. Evans (CRC Press), 231–265. doi:10.1201/b14658-15. Campos da Paz, V. K., Garcia, A., Campos da Paz Neto, A., and Tomaz, C. (2018). SMR neurofeedback training facilitates working memory performance in healthy older adults: A behavioral and EEG study. ​Front. Behav. Neurosci.​ 12, 321. doi:10.3389/fnbeh.2018.00321. Fotuhi, M., Lubinski, B., Trullinger, M., Hausterman, N., Riloff, T., Hadadi, M., and Raji, C. A. (2016). A personalized 12-week “Brain Fitness Program” for improving cognitive function and increasing the volume of hippocampus in elderly with mild cognitive impairment. ​J Prev Alzheimers Dis​ 3, 133–137. doi:10.14283/jpad.2016.92. Geladé, K., Janssen, T. W. P., Bink, M., Twisk, J. W. R., van Mourik, R., Maras, A., and Oosterlaan, J. (2018). A 6-month follow-up of an RCT on behavioral and neurocognitive effects of neurofeedback in children with ADHD. ​Eur. Child Adolesc. Psychiatry​ 27, 581–593. doi:10.1007/s00787-017-1072-1. Gomez-Pilar, J., Corralejo, R., Nicolas-Alonso, L. F., Álvarez, D., and Hornero, R. (2016). Neurofeedback training with a motor imagery-based BCI: Neurocognitive improvements 35
  36. 36. and EEG changes in the elderly. ​Med. Biol. Eng. Comput.​ 54, 1655–1666. doi:10.1007/s11517-016-1454-4. Jang, J.-H., Kim, J., Park, G., Kim, H., Jung, E.-S., Cha, J.-Y., Kim, C.-Y., Kim, S., Lee, J.-H., and Yoo, H. (2019). Beta wave enhancement neurofeedback improves cognitive functions in patients with mild cognitive impairment: A preliminary pilot study. ​Medicine (Baltimore)​ 98, e18357. doi:10.1097/MD.0000000000018357. Jirayucharoensak, S., Israsena, P., Pan-Ngum, S., Hemrungrojn, S., and Maes, M. (2019). A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment. ​Clin. Interv. Aging​ 14, 347–360. doi:10.2147/CIA.S189047. Keune, P. M., Hansen, S., Sauder, T., Jaruszowic, S., Kehm, C., Keune, J., Weber, E., Schönenberg, M., and Oschmann, P. (2019). Frontal brain activity and cognitive processing speed in multiple sclerosis: An exploration of EEG neurofeedback training. Neuroimage Clin.​ 22, 101716. doi:10.1016/j.nicl.2019.101716. Kober, S. E., Pinter, D., Enzinger, C., Damulina, A., Duckstein, H., Fuchs, S., Neuper, C., and Wood, G. (2019). Self-regulation of brain activity and its effect on cognitive function in patients with multiple sclerosis - First insights from an interventional study using neurofeedback. ​Clin. Neurophysiol.​ 130, 2124–2131. doi:10.1016/j.clinph.2019.08.025. Kober, S. E., Schweiger, D., Reichert, J. L., Neuper, C., and Wood, G. (2017). Upper alpha based neurofeedback training in chronic stroke: Brain plasticity processes and cognitive effects. ​Appl. Psychophysiol. Biofeedback​ 42, 69–83. doi:10.1007/s10484-017-9353-5. Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C., and Wood, G. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. ​J. Neuroeng. Rehabil.​ 12, 107. doi:10.1186/s12984-015-0105-6. Lavy, Y., Dwolatzky, T., Kaplan, Z., Guez, J., and Todder, D. (2019). Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. ​Appl. Psychophysiol. Biofeedback​ 44, 41–49. doi:10.1007/s10484-018-9418-0. Luijmes, R. E., Pouwels, S., and Boonman, J. (2016). The effectiveness of neurofeedback on cognitive functioning in patients with Alzheimer’s disease: Preliminary results. Neurophysiol. Clin.​ 46, 179–187. doi:10.1016/j.neucli.2016.05.069. Marlats, F., Djabelkhir-Jemmi, L., Azabou, E., Boubaya, M., Pouwels, S., and Rigaud, A.-S. (2019). Comparison of effects between SMR/delta-ratio and beta1/theta-ratio 36
  37. 37. neurofeedback training for older adults with mild cognitive impairment: A protocol for a randomized controlled trial. ​Trials​ 20, 88. doi:10.1186/s13063-018-3170-x. McReynolds, C., Villalpando, L., and Britt, C. (2018). Using neurofeedback to improve ADHD symptoms in school-aged children. ​NR​ 5, 109–128. doi:10.15540/nr.5.4.109. Morales-Quezada, L., Martinez, D., El-Hagrassy, M. M., Kaptchuk, T. J., Sterman, M. B., and Yeh, G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. ​Epilepsy Behav.​ 101, 106570. doi:10.1016/j.yebeh.2019.106570. Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P.-I., Mak, P. U., Vai, M. I., and Rosa, A. (2012). Individual alpha neurofeedback training effect on short term memory. ​Int. J. Psychophysiol.​ 86, 83–87. doi:10.1016/j.ijpsycho.2012.07.182. Sarvghadi, P., Ghaffari, A., and Rostami, H. R. (2019). The effects of neurofeedback training on short-term memory and quality of life in women with breast cancer. ​Int. J. Ther. Rehabil. 26, 1–8. doi:10.12968/ijtr.2018.0088. Shereena, E. A., Gupta, R. K., Bennett, C. N., Sagar, K. J. V., and Rajeswaran, J. (2019). EEG neurofeedback training in children with attention deficit/hyperactivity disorder: A cognitive and behavioral outcome study. ​Clin. EEG Neurosci.​ 50, 242–255. doi:10.1177/1550059418813034. Wang, Z. (2017). Neurofeedback training intervention for enhancing working memory function in attention deficit and hyperactivity disorder (ADHD) Chinese students. ​Neuroquantology 15, 277–283. doi:10.14704/nq.2017.15.2.1073. CASE REPORTS Askovic, M., Watters, A. J., Aroche, J., and Harris, A. W. F. (2017). Neurofeedback as an adjunct therapy for treatment of chronic posttraumatic stress disorder related to refugee trauma and torture experiences: Two case studies. ​Australas. Psychiatry​ 25, 358–363. doi:10.1177/1039856217715988. Riaño Garzón, M. E. (2018). Neurofeedback training to increase of cognitive skills in patient with traumatic brain injury (TBI). ​JNSK​ 8. doi:10.15406/jnsk.2018.08.00270. Surmeli, T., Eralp, E., Mustafazade, I., Kos, H., Özer, G. E., and Surmeli, O. H. (2016). Quantitative EEG neurometric analysis-guided neurofeedback treatment in dementia: 20 37
  38. 38. cases. How neurometric analysis is important for the treatment of dementia and as a biomarker? ​Clin. EEG Neurosci.​ 47, 118–133. doi:10.1177/1550059415590750. REVIEWS Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., and Kounios, J. (2007). EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. ​Clin. Neuropsychol.​ 21, 110–129. doi:10.1080/13854040600744839. Foster, P. P., Baldwin, C. L., Thompson, J. C., Espeseth, T., Jiang, X., and Greenwood, P. M. (2019). Editorial: Cognitive and brain aging: Interventions to promote well-being in old age. ​Front. Aging Neurosci.​ 11, 268. doi:10.3389/fnagi.2019.00268. Jiang, Y., Abiri, R., and Zhao, X. (2017). Tuning up the old brain with new tricks: Attention training via neurofeedback. ​Front. Aging Neurosci.​ 9, 52. doi:10.3389/fnagi.2017.00052. Kouzak Campos da Paz, V., and Tomaz, C. (2020). “Neurofeedback training on aging: Prospects on maintaining cognitive reserve,” in ​Mental Disorders​ (IntechOpen). doi:10.5772/intechopen.90847. Vigil, J., and Tataryn, L. (2017). Neurotherapies and Alzheimer’s: A protocol-oriented review. NeuroRegulation​ 4, 79–94. doi:10.15540/nr.4.2.79. Depression STUDIES Baehr, E., Rosenfeld, J. P., and Baehr, R. (2001). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders. ​J. Neurother.​ 4, 11–18. doi:10.1300/J184v04n04_03. Choi, S. W., Chi, S. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., and Kim, H. T. (2011). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology​ 63, 43–51. doi:10.1159/000322290. 38
  39. 39. Liu, H. (2017). Neurofeedback training intervention for persons with major depression disorder: Reducing depressive symptoms. ​Neuroquantology​ 15, 179–184. doi:10.14704/nq.2017.15.3.1091. Manchester, C. F., Allen, T., and Tachiki, K. H. (1998). Treatment of dissociative identity disorder with neurotherapy and group self-exploration. ​J. Neurother.​ 2, 40–53. doi:10.1300/J184v02n04_03. Peeters, F., Oehlen, M., Ronner, J., van Os, J., and Lousberg, R. (2014). Neurofeedback as a treatment for major depressive disorder--a pilot study. ​PLoS ONE​ 9, e91837. doi:10.1371/journal.pone.0091837. Raymond, J., Varney, C., Parkinson, L. A., and Gruzelier, J. H. (2005). The effects of alpha/theta neurofeedback on personality and mood. ​Brain Res. Cogn. Brain Res.​ 23, 287–292. doi:10.1016/j.cogbrainres.2004.10.023. Saxby, E., and Peniston, E. G. (1995). Alpha-theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. ​J. Clin. Psychol.​ 51, 685–693. doi:10.1002/1097-4679(199509)51:5<685::AID-JCLP2270510514>3.0.CO;2-K. Wang, S.-Y., Lin, I.-M., Peper, E., Chen, Y.-T., Tang, T.-C., Yeh, Y.-C., Tsai, Y.-C., and Chu, C.-C. (2016). The efficacy of neurofeedback among patients with major depressive disorder: Preliminary study. ​NR​ 3, 127–134. doi:10.15540/nr.3.3.127. White, E. K., Groeneveld, K. M., Tittle, R. K., Bolhuis, N. A., Martin, R. E., Royer, T. G., and Fotuhi, M. (2017). Combined neurofeedback and heart rate variability training for individuals with symptoms of anxiety and depression: A retrospective study. ​NR​ 4, 37–55. doi:10.15540/nr.4.1.37. CASE REPORTS Askovic, M., Watters, A. J., Aroche, J., and Harris, A. W. F. (2017). Neurofeedback as an adjunct therapy for treatment of chronic posttraumatic stress disorder related to refugee trauma and torture experiences: Two case studies. ​Australas. Psychiatry​ 25, 358–363. doi:10.1177/1039856217715988. Unterrainer, H. F., Chen, M. J. L., and Gruzelier, J. H. (2014). EEG-neurofeedback and psychodynamic psychotherapy in a case of adolescent anhedonia with substance 39
  40. 40. misuse: mood/theta relations. ​Int. J. Psychophysiol.​ 93, 84–95. doi:10.1016/j.ijpsycho.2013.03.011. REVIEWS Gruzelier, J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. ​Cogn. Process.​ 10 Suppl 1, S101-9. doi:10.1007/s10339-008-0248-5. Hammond, D. C. (2005a). Neurofeedback with anxiety and affective disorders. ​Child Adolesc. Psychiatr. Clin. N. Am.​ 14, 105–23, vii. doi:10.1016/j.chc.2004.07.008. Hammond, D. C. (2005b). Neurofeedback treatment of depression and anxiety. ​J. Adult Dev. 12, 131–137. doi:10.1007/s10804-005-7029-5. Micoulaud-Franchi, J. A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., and Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. ​Neurophysiol. Clin.​ 45, 423–433. doi:10.1016/j.neucli.2015.10.077. Rosenfeld, J. P. (2000). An EEG biofeedback protocol for affective disorders. ​Clin Electroencephalogr​ 31, 7–12. doi:10.1177/155005940003100106. Walker, J., Lawson, R., and Kozlowski, G. (2007). “Current status of QEEG and neurofeedback in the treatment of clinical depression,” in ​Handbook of Neurofeedback: Dynamics and Clinical Applications​, ed. J. Evans (New York: CRC Press), 341–352. doi:10.1201/b14658-19. Eating Disorders STUDIES Fattahi, S., Naderi, F., Asgari, P., and Ahadi, H. (2017). Neuro-feedback training for overweight women: Improvement of food craving and mental health. ​Neuroquantology​ 15. doi:10.14704/nq.2017.15.2.1067. 40
  41. 41. Imperatori, C., Valenti, E. M., Della Marca, G., Amoroso, N., Massullo, C., Carbone, G. A., Maestoso, G., Quintiliani, M. I., Contardi, A., and Farina, B. (2017). Coping food craving with neurofeedback. Evaluation of the usefulness of alpha/theta training in a non-clinical sample. ​Int. J. Psychophysiol.​ 112, 89–97. doi:10.1016/j.ijpsycho.2016.11.010. Lackner, N., Unterrainer, H.-F., Skliris, D., Shaheen, S., Dunitz-Scheer, M., Wood, G., Scheer, P. J. Z., Wallner-Liebmann, S. J., and Neuper, C. (2016). EEG neurofeedback effects in the treatment of adolescent anorexia nervosa. ​Eat. Disord.​ 24, 354–374. doi:10.1080/10640266.2016.1160705. Schmidt, J., and Martin, A. (2016). Neurofeedback against binge eating: A randomized controlled trial in a female subclinical threshold sample. ​Eur. Eat. Disord. Rev.​ 24, 406–416. doi:10.1002/erv.2453. Schmidt, J., and Martin, A. (2015). Neurofeedback reduces overeating episodes in female restrained eaters: A randomized controlled pilot-study. ​Appl. Psychophysiol. Biofeedback 40, 283–295. doi:10.1007/s10484-015-9297-6. REVIEWS Imperatori, C., Mancini, M., Della Marca, G., Valenti, E. M., and Farina, B. (2018). Feedback-based treatments for eating disorders and related symptoms: A systematic review of the literature. ​Nutrients​ 10. doi:10.3390/nu10111806. McGinnis, A. (2018). “Neurofeedback and the eating disordered brain,” in ​Trauma-Informed Approaches to Eating Disorders​, eds. A. Seubert and P. Virdi (New York, NY: Springer Publishing Company). doi:10.1891/9780826172655.0011. Schmidt, J., Kärgel, C., and Opwis, M. (2017). Neurofeedback in substance use and overeating: Current applications and future directions. ​Curr. Addict. Rep.​ 4, 116–131. doi:10.1007/s40429-017-0137-z. 41
  42. 42. Epilepsy STUDIES Ayers, M. (1995). Long-term follow-up of EEG neurofeedback with absence seizures. Biofeedback and Self-Regulation​ 20, 309. Ayers, M. E. (1988). Long-term clinical treatment follow-up of EEG neurofeedback for epilepsy. Epilepsy Support Program Newsletter​ 3, 8–9. Finley, W. W., Smith, H. A., and Etherton, M. D. (1975). Reduction of seizures and normalization of the EEG in a severe epileptic following sensorimotor biofeedback training: preliminary study. ​Biol. Psychol.​ 2, 189–203. doi:10.1016/0301-0511(75)90019-8. Fischer-Williams, M., and Clifford, B. C. (1988). Biofeedback treatment of patients with seizures: A pilot study of EEG feedback. ​Electroencephalogr Clin Neurophysiol​ 70, 18. Frey, L. (2016). Impact of sensorimotor rhythm neurofeedback on quality of life in patients with medically-refractory seizures. ​NR​ 3, 3–6. doi:10.15540/nr.3.1.3. Hansen, L. M., Trudeau, D. L., and Grace, D. L. (1996). Neurotherapy and drug therapy in combination for adult ADHD, personality disorder, and seizure disorder. ​J. Neurother.​ 2, 6–14. doi:10.1300/J184v02n01_02. Kaplan, B. J. (1975). Biofeedback in epileptics: Equivocal relationship of reinforced EEG frequency to seizure reduction. ​Epilepsia​ 16, 477–485. doi:10.1111/j.1528-1157.1975.tb06076.x. Lubar, J. F., and Bahler, W. W. (1976). Behavioral management of epileptic seizures following EEG biofeedback training of the sensorimotor rhythm. ​Biofeedback Self Regul.​ 1, 77–104. doi:10.1007/bf00998692. Monderer, R. S., Harrison, D. M., and Haut, S. R. (2002). Neurofeedback and epilepsy. ​Epilepsy Behav.​ 3, 214–218. doi:10.1016/s1525-5050(02)00001-x. Morales-Quezada, L., Martinez, D., El-Hagrassy, M. M., Kaptchuk, T. J., Sterman, M. B., and Yeh, G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. ​Epilepsy Behav.​ 101, 106570. doi:10.1016/j.yebeh.2019.106570. Seifert, A. R., and Lubar, J. F. (1975). Reduction of epileptic seizures through EEG biofeedback training. ​Biol. Psychol.​ 3, 157–184. doi:10.1016/0301-0511(75)90033-2. 42
  43. 43. Sterman, M. B. (1977). “Effects of sensorimotor EEG feedback training on sleep and clinical manifestations of epilepsy,” in ​Biofeedback and Behavior​, eds. J. Beatty and H. Legewie (Boston, MA: Springer US), 167–200. doi:10.1007/978-1-4684-2526-0_12. Sterman, M. B. (1973a). Neurophysiologic and clinical studies of sensorimotor EEG biofeedback training: Some effects on epilepsy. ​Semin. Psychiatry​ 5, 507–525. Sterman, M. B. (1973b). “Neurophysiological and clinical studies of sensorimotor EEG biofeedback training: Some effects on epilepsy,” in ​Biofeedback: Behavioral Medicine​, ed. L. Birk (New York: Grune & Stratton), 147–165. Sterman, M. B., and Lantz, D. (2001). Changes in lateralized memory performance in subjects with epilepsy following neurofeedback training. ​J. Neurother.​ 5, 63–72. doi:10.1300/J184v05n01_06. Swingle, P. G. (1998). Neurofeedback treatment of pseudoseizure disorder. ​Biol. Psychiatry​ 44, 1196–1199. doi:10.1016/s0006-3223(97)00541-6. Tozzo, C. A., Elfner, L. F., and May, J. G. (1988). EEG biofeedback and relaxation training in the control of epileptic seizures. ​Int. J. Psychophysiol.​ 6, 185–194. doi:10.1016/0167-8760(88)90004-9. Zhao, L., Liang, Z., Hu, G., and Wu, W. (2005). Nonlinear analysis in treatment of intractable epilepsy with EEG biofeedback. ​Conf. Proc. IEEE Eng. Med. Biol. Soc.​ 5, 4568–4571. doi:10.1109/IEMBS.2005.1615486. CASE REPORTS Legarda, S. B., McMahon, D., Othmer, S., and Othmer, S. (2011). Clinical neurofeedback: Case studies, proposed mechanism, and implications for pediatric neurology practice. ​J. Child Neurol.​ 26, 1045–1051. doi:10.1177/0883073811405052. Tansey, M. A. (1985). The response of a case of petit mal epilepsy to EEG sensorimotor rhythm biofeedback training. ​Int. J. Psychophysiol.​ 3, 81–84. doi:10.1016/0167-8760(85)90029-7. 43
  44. 44. REVIEWS Egner, T., and Sterman, M. B. (2006). Neurofeedback treatment of epilepsy: From basic rationale to practical application. ​Expert Rev. Neurother.​ 6, 247–257. doi:10.1586/14737175.6.2.247. Malkowicz, D., and Martinez, D. (2009). Role of quantitative electroencephalography, neurotherapy, and neuroplasticity in recovery from neurological and psychiatric disorders. ​J. Neurother.​ 13, 176–188. doi:10.1080/10874200903127049. Micoulaud-Franchi, J. A., McGonigal, A., Lopez, R., Daudet, C., Kotwas, I., and Bartolomei, F. (2015). Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. ​Neurophysiol. Clin.​ 45, 423–433. doi:10.1016/j.neucli.2015.10.077. Nigro, S. E. (2019). The efficacy of neurofeedback for pediatric epilepsy. ​Appl. Psychophysiol. Biofeedback​ 44, 285–290. doi:10.1007/s10484-019-09446-y. Sterman, M. B. (1997). The challenge of EEG biofeedback in the treatment of epilepsy: A view from the trenches. ​Biofeedback​ 25, 6–7. Sterman, M. B., and Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. ​Appl. Psychophysiol. Biofeedback​ 31, 21–35. doi:10.1007/s10484-006-9002-x. Tan, G., Thornby, J., Hammond, D. C., Strehl, U., Canady, B., Arnemann, K., and Kaiser, D. A. (2009). Meta-analysis of EEG biofeedback in treating epilepsy. ​Clin. EEG Neurosci.​ 40, 173–179. doi:10.1177/155005940904000310. Walker, J. E., and Kozlowski, G. P. (2005). Neurofeedback treatment of epilepsy. ​Child Adolesc. Psychiatr. Clin. N. Am.​ 14, 163–76, viii. doi:10.1016/j.chc.2004.07.009. 44

×