Morphology, Classification and Control of Mites

Bahuddin Zakariya University, Multan
Bahuddin Zakariya University, MultanStudent at University of Sargodha
Morphology, Classification and Control of Mites
Muhammad Zeeshan Nazar 1
Glenn B. Stracher 2
Zahid Mahmood Sarwar 3
1Faculty of Agriculture Science and Technology
Department of Agriculture Entomology
Bahauddin Zakariya University, Multan, Pakistan
2School of Science and Mathematics
East Georgia State College, University System of Georgia
Swainsboro, Georgia 30401 USA
3Faculty of Agriculture Science and Technology
Department of Agriculture Entomology
Bahauddin Zakariya University, Multan, Pakistan
1
2
Taxonomy
Kingdom: Animalia
Phylum: Arthropoda
Class: Arachnida
Order: Acari
• Mites and ticks collectively form the most diverse group of class Arachnida
• Mites are the 2nd most diverse group of living organisms after insects
• Until 1999, about 50,000 species of mites have been identified all over the
world (Walter and Proctor, 1999).
• Up to 2011, a total of 54,617 mites and ticks species has been reported
(Zhang, 2011).
• There is an estimate that half a million species are still to be identified.
Distribution
Mites are minute to small range from 300 to 500 µm in body length.
The largest Acari (Red velvet mites: Trombidiidea) may reach
lengths 10 – 20 mm i.e., 0.4 – 0.8 inches (Weygoldt, 1998).
• The small in size and strongest in evolutionary flexibility of the Acari have
permitted mites to colonize most of the aquatic and terrestrial habitats.
• As human being, the Acari form a major component of the fauna of the
cultivated crops and forests either as pest or as biological control agent (Kiefer
et al, 1982 and Gerson et al, 2003).
• Moreover, this little animal play an important role in litter, grasslands and
agricultural soils, where they recycle minerals (Balogh, 1972).
• Walter and Proctor (1999) summarized very effectively the ecological
importance and the economic role of mites as
“ The average mite is minuscule, barley perceptible to even the sharpest eyes.
When enough are present, mites can exert efforts disproportionate to their size.
• Mites are microscopic in nature and world wide in distribution and
successfully colonized the terrestrial and aquatic habitats.
• They are present in all types of abiotic and biotic habitats like planes,
mountains, desert, fresh water, salt water and springs, oceans, organic matter
and lotter.
• Mites are present in large number in soils where they constitute up to 7% of
total weight of invertebrate fauna.
Morphology, Classification and Control of Mites
Morphology of Mites
• The mite are too small in size to be studied like insects.
• Therefore, they have been ignored by zoologies and Entomologists.
• At the time of Linnaeus, only 30 species had been known.
• Mites can be found as ecto-parasites of other invertebrate and vertebrate
animals.
Morphology
• In the mites, the developing integument initially appears as undifferentiated
tissues which is covered by thin layer of cuticulin and separated from the
epidermis layer by ‘Schmidt layer’.
• During developmental process, base of the integument undergoes more
conversion and shows from the outside inwards.
• An epiculicular layer an underlying Schmidt layer and finally, a basal lamina
below the epidermis (Alberti et al, 1981 and Norton et al, 1997).
Integument
• In addition to micropores, in
integument, the body surface of
mites also have variety of
macropores that play a
functional role in secretory and
sensory process (Henriot, 1969).
Cement layer
Basal lamina
Epidermis
Nucleus
Schimdt layer
Endoculticle
Evolving pore canal
Exocuticle
Pore canal
Inner epicuticle
Outer epicuticle
Wax layer
(According to Norton et al, 1997)
• Mostly mites have oval-shaped bodies with two body regions that may
appear fused together.
• Mostly mites have piercing sucking mouthparts such as Phytophagous
and Predatory mites.
• Some mites have chewing mouthparts as Stored grain mites.
Body Division
• Mites can easily be distinguished from their sister class Insecta by the
following characters
S. No. Features Insects Mites
1. Body Division Head, thorax
and abdomen
Gnathosoma and
Idiosoma
2. Antenna Present Absent
3. Wings Present Absent
4. Legs 3 pairs 4 pairs
• The mites lack the true head and conspicuous body segmentation.
• The body of mites divided into
i. Gnathosoma
ii. Idiosoma
• The anterior part of the mite body is called as ‘gnathosoma’ that is moveably
connected to the idiosoma.
• The idiosoma is divided into the anterior podosoma and the posterior
opisthosoma.
Podosoma
Prosoma
(Gnathosoma +
Podosoma)
Sejugal furrow
disjugal furrow
Propodosoma
Idiosoma
Hysterosoma
Gnathosoma
Opisthosoma
Gnathosoma
• Gnathosoma considered the mouth parts which are mainly concerned with
feeding and for sensatory purpose.
• It is generally located anterior to the body but in some cases, it may be
hidden under the propodosoma.
• The gnathosoma having the mouthparts differ from a true head in a sense
that is lacks the eyes, antennae and brain.
• If eyes present, they are located in idiosoma.
• It generally consists of chelicerae and pedipals (Krantz, 2009).
Gnathosoma
Chelicerae
• Chelicerae are the main food getting organs.
• They are placed dorsally in relation to the opening mouth and commonly
consist of three segments known as cheliceral base, digitus fixus and digitus
mobilis.
• First segment is basal and bears the digitus fixus which is articulated with the
distal digitus mobilis dorsally (Grandjean, 1947).
• Both digits are provided with teeth on the opposite side of each other.
• The chelicerae are used for the cutting and piercing of food.
• They vary from three segmented and pincer like appendages of
mesostigmata to slender prostigmata.
• In phytophagous and parasitic mites,
there are modification in chelicerae that result in styliform, hood-like
or finely toothed like adapted to pierce plant or animal tissues or attacked
on bacterial film (Krantz, 2009).
• Bases of the chelicerae may be fused partially or completely to each other to
form stylophore as in Tetranychoidea.
• The digitus mobilis is modified into a stylet that can pierce the pant cell wall.
• Extrusion and retraction movements depends on contraction of dorsoventral
idiosomatic muscles and action of retractor muscles respectively.
• In some groups, the chelicerae are involved in sperm transfer (Krantz, 2009).
Pedipalp
• The pedipals are usually called simply “pulp” have five segments
beyond coax, usually resembling legs but shorter and primarily sensory
in nature rather than locomotors.
• The coax portions border the cheliceral bases and form the side walls of the
gnathosoma. Their distal segments bear many setae and sometimes claws.
21
• Their function is related to searching for and handling food, with the distal
segments usually leading to chemosensory and thigmotactic sensory
receptors which act as support for feeding activity.
• The number of papli vary from species to species as one or two in Astigmata
and Prostigmata, three or four in Ixodida, and five in Mesostigmata and
Oribatida (Krantz, 2009).
• In Tetranychidae, the palpi contain part of silk gland (Alberti and Crooker,
1985).
Morphology, Classification and Control of Mites
Idiosoma
Idiosoma
 The second division of the acarine body is the idiosoma.
 Often it is ovoid or sac like but occasionally worm like.
 A simple pattern divides the idiosoma into anterior propodosoma and the
posterior hysterosoma, distinct or not by sejugal furrow.
 The region bearing the legs that are derives from embryonal somites known as
podosoma (Coineau, 1974 and Krantz, 2009). 25
• The first two somites includes the first two pair of legs known as
propodosoma, while last part bearing two other pairs of legs known as
metapodosoma (Coineau, 1974 and Krantz, 2009).
• Organs for digestion, excretion and reproduction are present in idiosoma.
• Ocili if present they are also present in idiosoma.
• Sclerotized shields or plates that are heavily tanned are present on the cuticle
of the idiosoma, normally protect the upper surface of the idiosoma.
26
• Setae are also present on the
idiosoma.
• The number, type, shape,
distance and pattern of
distribution of these setae on
idiosoma is important are used
to classify many groups.
27
Setae
Legs
• Adult and nymphs of mites, except in some Prostigmata and Astigmata, have four
pairs of jointed legs and the larval instar has three pairs of legs.
• Typically the legs consists of seven segments.
• Their names are coxa, trochanter, femur, genu, tibia, tarsus and apotele.
• According to systematic group, the coxae may be free or fused with the ventral
podosoma and femur may be divided into basifemur and telofemur.
28
• One or, more segments of leg 2 and sometimes leg 5 are spurred in males
of the Mesostigmata are used to grasp the female during mating.
• Different segments of legs bear a number of setae which are arranged in
whorls i.e., in rings around the circumference of legs (Evans, 1963).
29
• The idiosoma has different types of sensory receptors known as
chemoreceptors, mechanoreceptors and photoreceptors with setal structure
(Evans, 1992 and Coons, 1999).
• The cuticular surface has different pore-like openings, which have a sensory
function (Krantz, 2009).
• These pores have various shaped but mostly small membrane covered clefts
Sensory Receptors
Secretory Organs
• Pore-like openings located in the cuticle of mites and connected b a ducts to
suncuticular gland cells (Alberti and Seeman, 2005).
• The nature of the secretory products is heterogenous and varies from cement
like to waxy (Evans, 1992 and Coons, 1999).
• The secretory products contain vary chemical composition, having
monoterpenes, hydrocarbons, esters, aromatics etc and may have various
functions that act as pheromones (Mizoguchi et al, 2003).
Life History of Mites
• The life cycle of Acari develops through the eggs and six biological instars:
Eggs Prelarva Larva Protonymph Deutonymph
Tritonymph Adult
• The two resting stages occur between larva and nymph and between nymph
and adult known as nymphochrysalis and imagochrysalis respectively
(Manson and Oldfiels, 1996).
Life cycle
• Life cycle of mites depending on the temperature and availability of food.
• This cycle usually takes 17 days at 20 OC
• Female deposit 5 to 6 eggs per day, with total
of 60 to 100 eggs underside of the leaves.
• Mostly eggs are oval in shape and reddish, orange
or whitish in colour.
• Eggs hatch in 3 to 6 days depending on environmental condition.
Eggs
Spider mite eggs by Scot Nelson
• The prelarva also known as prolarva or deutovum and represents a non-
feeding stage and lack legs, known as calyptostasis.
• It develops inside the egg chorion and consume yolk.
• In some groups the prelarva has three pairs of legs, mouthparts and setae,
known as elattostasis (Coineau, 1974).
• A calyptostasis is reported for Tetranychus urticae and elattostasis for
Panthaleidae (Andre and Van Impe, 2012).
Prelarva
• This is active, feeding instar, a weak, miniature stage.
• After eclosion, larvae shed both skin and chorion.
• Larva is typical six-legged instar and lack external genitalia.
• In some groups, larva directly develops into nymph, known as
nymphochrysalis while in other case, larva first changes into protonymph
before nymph, known as protochrysalis (Oku et al, 2003).
Larva
• They represent the first eight-legged nymphal instar that is free living and
active.
• The protonymph of the Tetranychus kanzawai develops into the deutonymph
through a resting stage known as deutochrysalis (Oku et al, 2003).
This second nymphal instar in eight legged and resembles t the adult but lack
external sexual organ.
Protonymph
Deutonymph
• When tritonymph (third instar) is absent, the deutonymph develops into the
adult through resting stage known as teliochrysalis (Oku et al, 2003).
Tritonymph
• This third nymphal instar is eight legged and uncommon.
• When present, it is active and free living.
• It is absent in Mesostigmata and in many Prostigmata.
• Larva and nymphs complete development in 4 to 9 days depending on
temperature.
• Generally, the adult instar concludes the biological life cycle.
• It is eight legged and sexually functional and live about 30 days.
• In T. urticae, the adult instar is absent and is replaced by tritonymph instar,
which is able to reproduce by pedogensis (Andre and Van Impe, 2012).
• The male and female sex ration vary from species to species as in
eriophyoid mites, the percentage of female ranges from 51 to 95 % (Sabelis
and Bruin, 1996).
Adult
• Generally, mites tend to increase in population during the summer as the
prefer hot day conditions.
• Reproduction in mites is characterized by a haploid-diploid genetic system.
The main genetic systems are diplodiploidy, haplodiploidy and thelytoky.
• All these systems are sexual.
• Mites have very small chromosomes, less than 0.03 mm long.
• They have 2 to 12 numbers of chromosomes varies from group to group
(Wrensch et al, 1994)
Life stages of Chaetodactylus krombeini (Astigmata) by Ron Ochoa and Gary Bauchan, USDA-ARS
Categories of Mites
The mites can be divided into four main groups according to their economic
importance i.e.,
i. Phytophagous mites ( plant feeding mites)
ii. Predatory mites.
iii. Stored grain and stored product mites.
iv. Parasites mites (mites of medical and veterinary importance)
Types
Phytophagous Mites
• Phytophagous mites infest and damage cultivated crops, vegetables,
orchards, ornamental plants, forest trees and also wild vegetation.
• Worldwide, around 7500 species of phytophagous mites are known which
damage plants.
• They are usually opaque white, translucent, slow moving and short legged.
• They infest the leaves, inflorescence and developing tissue by sucking the
sap with their stylet like chelicerae.
Phytophagous Mites
• These mites cause both qualitative and quantitative losses.
• In various crops like rice, sugarcane, brinjal, okra and chillies, 10-30%
losses are reported due to spider mites.
• The damage is more severe in case of mangoes where it may reach up to
50-80 % (Chhillar et al., 2007).
• Tetranychus urticae can damage 18-22 cells in a minute (Liesering 1960).
• Their feeding results in leaf stippling, blotching, curling and twisting.
• They also modify the developing tissue by forming galls and injecting
toxins (Jeppson, Baker and Keifer, 1975).
• The symptoms may be irregular deformities of growth pattern, rosette type
growth, irregular leaf or fruit growth, total destruction of growing tips etc.
• All stages of mites except eggs can transmit virus and cause diseases.
• Different viral diseases caused are wheat streak mosaic, fig mosaic, potato
virus, tobacco ring spot and tobacco mosaic virus etc.
• Certain soil inhabiting mites carry fungal spores of various root crop diseases
like fungal rot of garlic and onion (Evans, 1992).
The damage pattern of mites belonging
to these families is as follows
1. Tetranychidae
• Both nymphs and adults feed on the leaf surface.
• White spots are formed on the leaves in later stages of infestation and general
chlorosis occurs in patches.
• Tetranychid mites secrete certain substances into plant cells.
• Puncturing of new cells proceeds from one spot to another in the form of a
circle, which results in the formation of small rounded chlorotic spots.
.
• It is estimated that roughly 50 per cent of the mass of an adult female
spider mite is eaten per mite per hour.
• The numbers of photosynthetically active leaf cells that are punctured
and emptied per mite, are 100 cells per minute.
• At the macroscopic level, damage from mite feeding can cause leaf
bronzing, stippling or scorching as well as extensive webbing on leaf
surface and black fecal dots are seen on the leaf surface.
• Severe spider mite infestation cause major reductions in plant growth rates,
flower formation and yield.
• Penetration of cells by mite stylets and injection of saliva cause both
mechanical damage and changes in cell cytology, physiological and
biochemical processes of non-punctured adjacent cells.
• In case of severe infestation, plants show yellowing and general drying of
leaves, which drop prematurely.
Morphology, Classification and Control of Mites
2. Eriophyidae:
The mites occur on all parts of a plant and may or may not exhibit the
symptoms of damage.
Based on type of injury, they have been classified as under:
a. Gall Formers
• Due to feeding on various plant parts hypertrophy of cells occur.
• It results into formation of galls on leaves, flower buds and stem.
• Different types of galls like pouch galls (Pongamia sp.), bead galls (Ficus
sp.), finger galls (Pongamia sp.)
Morphology, Classification and Control of Mites
b. Leaf Rollers
These mites roll the whole leaves or only edges of leaves and feed within
the rolls.
c. Erineum Formers
Due to feeding by mites, epidermal layer of cells produce hair like out
growths, which produce the erineum.
d. Blister Mites
Some species cause formation of blisters on the leaf sheath and feed within.
Leaf Rollers Erineum Formers
Blister Mites
3. Tenuipalpidae:
• These mites generally feed on the ventral
surface of leaves near the midrib or
veins.
• There is bronzing and rusting symptoms
on the lower surface of leaves due to
feeding of nymphs and adults.
• Some species form galls on the leaves
and stems of plants.
4. Tarsonemidae:
• They usually infest the tender portion of
plants and suck the sap from buds, leaves,
shoots, flowers and stem sheath.
• They cause curling, crinkling and brittleness
of foliage but shows little leaf symptoms.
• The injury caused by this group is often
mistaken as a disease symptoms caused by
pathogenic microorganisms.
5. Tuckrellidae:
• This is the smallest phytophagous family,
which includes four species.
• These are brightly colored having fan like
dorsal body setae and long whip like caudal
setae.
• The mites do not have much importance, as
they do not cause any economic damage
(Chhillar et al., 2007).
Predatory Mites
Predatory Mites
There is a large group of predatory mites which feed on other harmful mites,
small soft bodied insects, their eggs and occasionally on nematodes (Krantz,
1978). These mites are usually red, yellow and green, long legged and fast
moving.
1. Phytoseiidae
• This group has received maximum attention globally as they are reported
as predators of phytophagous mites and small insects.
• These mites are whitish/ creamish/ reddish or light brownish in color,
fast moving and abundant in nature.
• They have very long legs, which help them to run very fast.
• They have wide range of food habits from carnivores to non-animal food
(pollen, honey, nectar, plant sap) eaters.
• These mites have several advantages over
other predatory mites because of High
fecundity
 Abundant availability
 Good searching ability
 Dispersal rate
 Adaptability to different ecological niches
 High degree of prey specificity
2. Stigmaeidae
• These are probably next to phytoseiidae as far as predatory efficiency is
concerned.
• These are yellowish/reddish/light brownish in color
• Ovoid or elongated in shape which occupy various habitats.
• These mites cannot run very fast hence these are used for controlling slow
moving mites and for destruction of mite eggs.
• Agistemus spp. are found to be of high promise as biocontrol agents.
Ventral view Dorsal view
3. Anystidae
• These are round, long legged, reddish
and soft bodied mites.
• They are very fast moving and start
making whirling movement as soon as
touched.
4. Bdellidae
• These are fast moving, medium sized and reddish in colour.
• They prey upon phytophagous mites and small insects like collembola.
• So far, no species of high predatory potentiality has been noticed in field.
5. Cheyletidae
• These are free living predators of phytophagous,
stored and house dust mites.
• Comb like or sickle like setae are present on
pedipalp tarsus.
• Cheletogenes, Cheyletus, Hemicheyletia,
Paracheyletia are important genera whose
interaction with phytophagous mites are well
documented (Chhillar et al., 2007).
6. Cunaxidae
• These are reddish/yellowish/ brownish
mites, fairly fast moving and are known to
be active predators of phytophagous mites.
• They have very strong and thorny
mouthparts but their number is limited in
nature.
• Some of the mites are known to fasten
their preys with silken threads secreted by
their mouthparts.
Stored Grain and Stored Product Mites
Stored Grain and Stored Product Mites
Mites of stored grain and stored product are of great economic importance.
These mites infest and cause damage to goods in following ways:
• Stored grain cereals.
• Seeds of all kind
• Bulbs, tubers and decaying material
• Fresh, cultivated and stored mushrooms
• Dried fruits of all kind
71
Direct Damages
• Some free living mites live in the stored grains and their products where they
multiply rapidly and attain the status of pests.
• Food products, especially the cereals are liable to be infested directly.
• The mites penetrate the seeds through cracks, tear the outer covering of
embryo and eat away cavities where they develop and multiply.
72
• These mites feed on the grain itself or fungi growing on it.
• These mites have blunt chelicerae for scraping and gouging the food.
• Majority of these mites feed on the embryo while some can feed on
cotyledons as well.
• Due to the attack of these mites quality of the stored grains is affected more
badly as compared to the quantity.
73
Indirect Damages
• These mites cause damage to stored grains products by raising the moisture content
and generating sufficient heat which favors growth and infections of pathogens.
• They contaminate the space between the grains with their dead bodies, cast skins and
excrement hereby hindering the circulation of the air in the stock.
• They also act a vectors of fungal and bacterial diseases and spread those through out
the whole mass.
74
• The flour which is prepared from infested grains is more acidic in nature, bitter
taste, stagnant smell, more hygroscopic and has a tendency to stick togather.
• They are clumsy, slow in movement and almost incapable of covering large
distance by themselves.
• They can undergo a transitory quiescent stage which is very difficult to control.
• The mites of stored of stored grain include following important families
75
1. Acaridae
• Inhalation or contact on the skin or mucus
membranes of the eyes can induce allergic
reactions.
• These mites also occur in bread, pancakes,
cakes, pizza, pasta, and bread made from
ingredients contaminated with mites.
• Humans have had anaphylactic reactions after
eating these mite contaminated foods.
• This mite also known as flour mite, which is pale greyish white in color
with pink legs.
• The males are from 0.33–0.43 mm in length and the female is from 0.36–
0.66 mm in length .
• Flour mites contaminate grain and flour by allergens and they transfer
pathogenic microorganisms.
• Foodstuffs acquire a sickly sweet smell and an unpalatable taste.
2. Tyroglyphidae
• When infested feeds fed by animals , they
show reduced feed intake, diarrhea,
inflammation of the small intestine, and
impaired growth.
• If a person is bitten from a flour mite they
might suffer a reaction called Baker's itch.
• Carpoglyphus lactis is a stored product mite
infesting saccharide rich stored commodities
including dried fruits, wine, beer, milk
products, jams and honey.
• The association with micro-organisms can
improve the survival of mites on dried fruits.
3. Carpoglyphidae
• This mite also known as Furniture mite, is
found in foods and grains in warehouses.
• In homes, it flourishes in infested foodstuffs
and in damp areas.
• It has a soft, cream-white body.
• For both sexes, the body bristles are very long
and feathery, 0.3 – 0.7 mm in length.
• Its main food sources are flour, cereals, other
cereal products and fungi.
4. Glycyphagidae
5. Pyroglyphidae
• These mites feed on stored products such as grain, cereals, nuts, dried fruit,
cheeses and pet foods, but only in conditions of high relative humidity.
• Each species is the source of multiple potent
allergens that sensitize and trigger allergic
reactions cause perennial rhinitis, asthma
and atopic dermatitis.
Parasitic Mites
Parasitic Mites
 Some mites are parasites of man, animal, other arthropods ,poultry birds and
cause many disease in them.
 These are either ecto-parasites and endo-parasites.
 They have tearing and piercing type of that cause scaling and crushing around
the legs of poultry birds.
 Northern fowl mite and red chicken mite are very important parasites of
poultry birds all over the world.
83
• Psoroptes species (non burrowing mites) cause sheep scab.
• They damage wool and sometimes the loss of animal may also occur.
• Scrub typhus is caused by chigger mites
• Even human beings are not free from their effect
Sarcoptes scabies causes itching in human.
• Trombicula akamushi and dust mite cause lung
disease like asthma. 84
Scrub typhus
• Trombicula akamushi and dust mite cause lung disease like asthma.
• These mites are also vectors of internal parasites like tape worm and filarial
worms. e.g, Family Oribatidae, Acrididae and Pyemotidae etc.
• Gamasid mites are considered as vectors of epidemic hemorrhagic fever virus.
• Leptotombidiumni akamushi and L. deliense are transmitters of scrub typhus
in man.
85
Biology
• Mites associated with mammals and birds are usually translucent or
whitish in color so they are difficult to detect.
• After feed on host’s blood their color changes to reddish brown.
• Life cycle include egg, larva , two nymphal stages and adult.
86
Nature of Damage
• These mites act as causative agents for anaemia.
• Pneumonia crusting of skin, hair loss, decreased production, death of host
occurs in severe case of inflammation.
• Inflammation, scratching and irrition lead to secondary infection.
• Sarcoptes scabei in case of heavy infestation may cause death of the animal.
• The life cycle of these mites generally require 2 to 17 days. 87
Mites associated with honeybees
• There are certain mites which are associated with honey bees.
• These mites maybe external parasites like varroa destructor, varroa jacobsoni
and internal parasites like Acarapis woodi.
• Some mites which cause the bees as carries to move from
one place to another are also present around the bee hives.
88
Families of Parasitic mites
• Family sarcoptidae mites are tiny arachinids that are parasites of mammals
and humans
• These cause infection and the mites spend their life in the epidermis of the
skin of their host causing various skin disorders.
89
1. Psoroptidae
• Well-known sheep mange mites
causing serious damage to fleece
and can even cause deaths.
90
2. Knemidocoptidae
• Species of this family burrow in the non-
feathered areas around the break, eyes, vent
and legs of birds causing tiny non-itching
wart-like lesions.
91
3. Pyroglyphidae
• Members of the family are the well-
known house dust mites causing asthma,
rhinitis and allergies in human due to an
antigen they produce.
• Where the humidity is very high.
92
4. Demodicidae
• Members of this family cause symptoms in mammals characterized by
itching, inflammation and other skin disorders.
93
Management of Mites
Monitoring
• Mites are small and difficult to see with the naked eye.
• Using a 10x hand lens will enhance your ability to see mites and their eggs.
• Spider mites can be detected by infestations such as cast skins and webbing.
• The mites, eggs and cast skins can seen under surfaces of the leaves.
• Mites can also be sampled using the "beat method" whereby plant parts are
beaten onto an white paper.
• This method works particularly well for evergreens and small-leaved plants.
Cultural Control
• Use of clean, pest free plants and cuttings is essential.
• Knowledge of mite prone species/ varieties can enable the grower to avoid
these plants or to monitor these most closely as "indicator" plants.
• Watering practices affect spider mite populations.
• Drought-stressed plants are most susceptible to mite outbreaks
• Overhead sprinkler systems are less favorable for mite outbreaks.
Biological Control
• A number of predatory mite species are available for mites control.
• Phytoseiulus persimilis, Mesoseiulus longipes, Metaseiulus occidentalis and
Neoseilus californicus have been marketed for released into greenhouses.
Occasionally they are applied as Biotic Insecticides using an Inundative
Release to try to bring down an existing population.
Physical Control
• High-volume, high pressure water sprays through some application devices
such as the Water Wand and Jet All-Water Wand can displace many mites
from foliage and reduced mites population for short period of time.
Chemical Control
• Different miticides have different performance characteristics.
• For example: Avid penetrates into treated foliar plant cells.
• Pentac is relatively slow acting and has ovicidal activity
• Sulfur, registered as a Miticide on some vegetable crops but highly
phytotoxic.
Resistance Management:
• Use miticides only when mites or plant injury they cause is first detected.
• Use the lowest effective miticide rates initially.
• Use long rotation of miticides with different modes of activity.
• Use of tank mixtures containing two or more products with different
modes of action on the mite's nervous system.
References
Vacante, V. 2016. The Handbook of Mites of Economic Plants. Professor of General and Applied Entomology. Mediterranean
University of Reggio Calabria, Italy
Gerson, U. et al. 2003. Pest Control by Mites (Acari): Present and Future. Department of Entomology, The Robert H. Smith
Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot. Vol. 4: pp. 371-394
Krantz, G. W. and Walter, D. E. 2009. A Manual of Acarology. Third Edition. Texas Tech University Press; Lubbock, Texas
Zhang, Z.Q. 2011. Authorship and Date of Two Family-group Names in the Trombidiidae (Acariformes: Parasitengona).
Systematic & Applied Acarology, Vol. 16 pp. 192-192
Balogh, P. 1985. Some interesting Oribatuloidea Wooley, 1956 from the Hawaiian Islands (Acari, Oribatei). Opusc. Zool.
Budapest pp.19-20 and 57-61.
Balogh, J. 1972. The Oribatid Genera of the World. Budapest, Hungary, Akademiai Kiado
Walter, D. E. and Proctor H. C. 2001. Mites in Soil, An Interactive Key to Mites and Other Soil Microarthropods. ABRS
Identification Series. Collingwood, Victoria: CSIRO Publishing.
Grandjean, F. 1947. The Hairy Origin of the Jaws and the Chaetotaxy of the Mandible in Action Chitinous Mites.
Proceedings of the Sessions of the Academy of Sciences. 1251-1254.
Alberti, G. and Crooker, A.R. 1985. Internal Anatomy. Spider mites. Their Biology, Natural Enemies and Control. World
Crop Pests. Vol. 1A. Elsevier, Amsterdam, pp. 29-62
Keifer, H.H., Baker, E.W., Kono, T., Delfinado, M. and Styer, W.E. 1982. An Illustrated Guide to Plant Abnormalities
Caused by Eriophyid Mites in North America. USDA, ARS, Agricultural Handbook, 573, 1-178.
Weygoldt, P. 1998. Evolution and systematics of the Chelicerata. Experimental & Applied Acarology. Institut for Biologie
(Zoologie), Albert-Ludwigs-Universit¨at, Hauptstraße Freiburg, Germany 63-79
Norton, R.A and Phillips, T.L. 1997. Oribatid Mites And the Decomposition of Plant Tissues in Paleozoic Coal-Swamp
Forests. SEPM Society for Sedimentary Geology. Vol. 12, pp. 319-353
Coineau, Y. 1974. New Methods for The Study of The Morphology of Chitinous Structures of Mites. A quarterly journal
of acarology. Vol. 16 pp. 4-10
Evans, D et al. 1992. Acari: The Mites. Version 13 in The Tree of Life Web Project
Oldfield G.N. 1996 Spermatophore deposition, Mating Behaviour and Population Mating Structure. Eriophyoid Mites:
Their Biology, Natural Enemies and Control. World Crop Pests. Elsevier Science Publishing, Amsterdam, The
Netherlands. Vol 6, pp 185-198
Andre, H.M. and Van Impe, G. 2012. The Missing Stase in Spider Mites (Acari: Tetranychidae): When The Adult is
Not the Imago. A quarterly journal of acarology. Vol. 52, pp. 3-16
Oku, K. et al. 2003. Spider Mites Assess Predation Risk by Using The Odor of Injured Conspecifics. Journal of
Chemical Ecology, Vol. 29.
Sabelis, M.W. and Bruin, J. 1996. Eriophyoid Mites: Their Biology, Natural Enemies and Control. World Crop Pest
Chhillar, B.S., Gulati, R. and Bhatnagar, P., 2007. Agricultural acarology. Daya Publ. House, Delhi, 355pp.
Mizoguchi, A. et al. 2003. α-Acaridial A Female Sex Pheromone From an Alarm Pheromone Emitting Mite
Rhizoglyphus robini. Journal of Chemical Ecology, Vol. 29
Morphology, Classification and Control of Mites
1 of 102

Recommended

Mites ppt by
Mites ppt Mites ppt
Mites ppt KapilMahla3
9.1K views21 slides
Nematode biology by
Nematode biology Nematode biology
Nematode biology Francis Matu
16K views36 slides
Order orthroptera by
Order orthropteraOrder orthroptera
Order orthropteraNavneet Mahant
1.7K views11 slides
Insect Cuticle and Moulting by
Insect Cuticle and MoultingInsect Cuticle and Moulting
Insect Cuticle and MoultingBhubanananda Adhikari
5.7K views29 slides
Dictyoptera and Isoptera by
Dictyoptera and IsopteraDictyoptera and Isoptera
Dictyoptera and IsopteraJayantyadav94
10.8K views41 slides

More Related Content

What's hot

Insect head by
Insect headInsect head
Insect headNaga Satyasri Ch
48.8K views76 slides
Insect pests of paddy by
Insect pests of paddyInsect pests of paddy
Insect pests of paddyNavneet Mahant
2.5K views57 slides
Morphology of nematodes by
Morphology of nematodesMorphology of nematodes
Morphology of nematodesAnurAg Kerketta
4.4K views11 slides
Insect Mouthparts by
Insect MouthpartsInsect Mouthparts
Insect MouthpartsNaga Satyasri Ch
52.6K views71 slides
Veterinary entomoloy by
Veterinary entomoloyVeterinary entomoloy
Veterinary entomoloyTofiqueAhmed5
1.1K views143 slides

What's hot(20)

Physiology of Integuments and moulting in insects by LogeswaranVijayan
Physiology of Integuments and moulting in insectsPhysiology of Integuments and moulting in insects
Physiology of Integuments and moulting in insects
LogeswaranVijayan1.5K views
Identification of predators ppt by Nisha Nepoleon
Identification of predators pptIdentification of predators ppt
Identification of predators ppt
Nisha Nepoleon11.2K views
Insect thorax and abdomen by Yuvraj Singh
Insect thorax and abdomenInsect thorax and abdomen
Insect thorax and abdomen
Yuvraj Singh2.4K views
Methods of insect collection, preservation, display and storage by Dr. T. Kri... by krishnachaitanyatiru2
Methods of insect collection, preservation, display and storage by Dr. T. Kri...Methods of insect collection, preservation, display and storage by Dr. T. Kri...
Methods of insect collection, preservation, display and storage by Dr. T. Kri...
krishnachaitanyatiru230.6K views
Position of insects in animal kingdom and their relationship with other arthr... by krishnachaitanyatiru2
Position of insects in animal kingdom and their relationship with other arthr...Position of insects in animal kingdom and their relationship with other arthr...
Position of insects in animal kingdom and their relationship with other arthr...

Similar to Morphology, Classification and Control of Mites

B.sc agriculture i principles of plant pathology u 5.2 nematodes by
B.sc agriculture i principles of plant pathology u 5.2  nematodesB.sc agriculture i principles of plant pathology u 5.2  nematodes
B.sc agriculture i principles of plant pathology u 5.2 nematodesRai University
6.8K views32 slides
General entomology edited New.pptx by
General entomology edited New.pptxGeneral entomology edited New.pptx
General entomology edited New.pptxArayaGebresilassie
29 views282 slides
Phylum nematoda & phylum kinorhyncha by
Phylum   nematoda &  phylum kinorhynchaPhylum   nematoda &  phylum kinorhyncha
Phylum nematoda & phylum kinorhynchaAnzaDar3
518 views23 slides
Nematodes History.pdf by
Nematodes History.pdfNematodes History.pdf
Nematodes History.pdfHaseebAli517227
174 views38 slides
Order hemiptera True bugs by
Order hemiptera True bugs Order hemiptera True bugs
Order hemiptera True bugs NizadSultana
503 views41 slides
Ix biology full notes chapter 3 by
Ix biology full notes chapter 3Ix biology full notes chapter 3
Ix biology full notes chapter 3neeraj_enrique
10.5K views35 slides

Similar to Morphology, Classification and Control of Mites(20)

B.sc agriculture i principles of plant pathology u 5.2 nematodes by Rai University
B.sc agriculture i principles of plant pathology u 5.2  nematodesB.sc agriculture i principles of plant pathology u 5.2  nematodes
B.sc agriculture i principles of plant pathology u 5.2 nematodes
Rai University6.8K views
Phylum nematoda & phylum kinorhyncha by AnzaDar3
Phylum   nematoda &  phylum kinorhynchaPhylum   nematoda &  phylum kinorhyncha
Phylum nematoda & phylum kinorhyncha
AnzaDar3518 views
Order hemiptera True bugs by NizadSultana
Order hemiptera True bugs Order hemiptera True bugs
Order hemiptera True bugs
NizadSultana503 views
Ix biology full notes chapter 3 by neeraj_enrique
Ix biology full notes chapter 3Ix biology full notes chapter 3
Ix biology full notes chapter 3
neeraj_enrique10.5K views
Forensic entomology by Saniya Zedi
Forensic entomologyForensic entomology
Forensic entomology
Saniya Zedi105 views
Burgess Shale Essay by Julie May
Burgess Shale EssayBurgess Shale Essay
Burgess Shale Essay
Julie May2 views
Evolution Of Animals And Their Organ Systems by Julie Kwhl
Evolution Of Animals And Their Organ SystemsEvolution Of Animals And Their Organ Systems
Evolution Of Animals And Their Organ Systems
Julie Kwhl2 views
Lecture 001 nematodes general by farhab dvm
Lecture 001 nematodes generalLecture 001 nematodes general
Lecture 001 nematodes general
farhab dvm682 views
Ls2 afet unit 4 biodiversity of animals invertebrates by Thabo Bafana
Ls2 afet unit 4 biodiversity of animals invertebratesLs2 afet unit 4 biodiversity of animals invertebrates
Ls2 afet unit 4 biodiversity of animals invertebrates
Thabo Bafana973 views
Unit 4 biodiversity of animals invertebrates by hlengizwe10
Unit 4 biodiversity of animals invertebratesUnit 4 biodiversity of animals invertebrates
Unit 4 biodiversity of animals invertebrates
hlengizwe10461 views
Unit 4 biodiversity of animals invertebrates by Obey Maduna
Unit 4 biodiversity of animals invertebratesUnit 4 biodiversity of animals invertebrates
Unit 4 biodiversity of animals invertebrates
Obey Maduna79 views
A Brief Lok At The Earthworm by Lisa Moore
A Brief Lok At The EarthwormA Brief Lok At The Earthworm
A Brief Lok At The Earthworm
Lisa Moore6 views
CLASSIFICAATION OF LIVING ORGANISMS by izengo
CLASSIFICAATION OF LIVING ORGANISMSCLASSIFICAATION OF LIVING ORGANISMS
CLASSIFICAATION OF LIVING ORGANISMS
izengo264 views
Rhetorical Analysis Of Earthworms by Jill Crawford
Rhetorical Analysis Of EarthwormsRhetorical Analysis Of Earthworms
Rhetorical Analysis Of Earthworms
Jill Crawford3 views

More from Bahuddin Zakariya University, Multan

Establishment of Garden by
Establishment of GardenEstablishment of Garden
Establishment of GardenBahuddin Zakariya University, Multan
2.3K views51 slides
Plant Growth Regulators by
Plant Growth RegulatorsPlant Growth Regulators
Plant Growth RegulatorsBahuddin Zakariya University, Multan
3.4K views15 slides
Game Reserves in Pakistan by
Game Reserves in PakistanGame Reserves in Pakistan
Game Reserves in PakistanBahuddin Zakariya University, Multan
4.4K views28 slides
Fruiting bodies of Ascomycota by
Fruiting bodies of AscomycotaFruiting bodies of Ascomycota
Fruiting bodies of AscomycotaBahuddin Zakariya University, Multan
6.2K views23 slides

More from Bahuddin Zakariya University, Multan(20)

Recently uploaded

BLOTTING TECHNIQUES SPECIAL by
BLOTTING TECHNIQUES SPECIALBLOTTING TECHNIQUES SPECIAL
BLOTTING TECHNIQUES SPECIALMuhammadImranMirza2
7 views56 slides
POSTER IV LAWCN_ROVER_IUE.pdf by
POSTER IV LAWCN_ROVER_IUE.pdfPOSTER IV LAWCN_ROVER_IUE.pdf
POSTER IV LAWCN_ROVER_IUE.pdfSOCIEDAD JULIO GARAVITO
11 views1 slide
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... by
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...ILRI
5 views6 slides
TF-FAIR.pdf by
TF-FAIR.pdfTF-FAIR.pdf
TF-FAIR.pdfDirk Roorda
6 views120 slides
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy... by
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...Anmol Vishnu Gupta
7 views10 slides
RemeOs science and clinical evidence by
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidencePetrusViitanen1
53 views96 slides

Recently uploaded(20)

Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... by ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 views
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy... by Anmol Vishnu Gupta
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...
Evaluation and Standardization of the Marketed Polyherbal drug Patanjali Divy...
RemeOs science and clinical evidence by PetrusViitanen1
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidence
PetrusViitanen153 views
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana... by jahnviarora989
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
jahnviarora9897 views
별헤는 사람들 2023년 12월호 전명원 교수 자료 by sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople63 views
Exploring the nature and synchronicity of early cluster formation in the Larg... by Sérgio Sacani
Exploring the nature and synchronicity of early cluster formation in the Larg...Exploring the nature and synchronicity of early cluster formation in the Larg...
Exploring the nature and synchronicity of early cluster formation in the Larg...
Sérgio Sacani1.2K views
Open Access Publishing in Astrophysics by Peter Coles
Open Access Publishing in AstrophysicsOpen Access Publishing in Astrophysics
Open Access Publishing in Astrophysics
Peter Coles1.2K views
Light Pollution for LVIS students by CWBarthlmew
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS students
CWBarthlmew12 views
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F... by SwagatBehera9
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
Effect of Integrated Nutrient Management on Growth and Yield of Solanaceous F...
SwagatBehera95 views
How to be(come) a successful PhD student by Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens537 views
application of genetic engineering 2.pptx by SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz14 views
Factors affecting fluorescence and phosphorescence.pptx by SamarthGiri1
Factors affecting fluorescence and phosphorescence.pptxFactors affecting fluorescence and phosphorescence.pptx
Factors affecting fluorescence and phosphorescence.pptx
SamarthGiri17 views
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio... by Trustlife
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...
Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositio...
Trustlife142 views

Morphology, Classification and Control of Mites

  • 1. Morphology, Classification and Control of Mites Muhammad Zeeshan Nazar 1 Glenn B. Stracher 2 Zahid Mahmood Sarwar 3 1Faculty of Agriculture Science and Technology Department of Agriculture Entomology Bahauddin Zakariya University, Multan, Pakistan 2School of Science and Mathematics East Georgia State College, University System of Georgia Swainsboro, Georgia 30401 USA 3Faculty of Agriculture Science and Technology Department of Agriculture Entomology Bahauddin Zakariya University, Multan, Pakistan 1
  • 3. • Mites and ticks collectively form the most diverse group of class Arachnida • Mites are the 2nd most diverse group of living organisms after insects • Until 1999, about 50,000 species of mites have been identified all over the world (Walter and Proctor, 1999). • Up to 2011, a total of 54,617 mites and ticks species has been reported (Zhang, 2011). • There is an estimate that half a million species are still to be identified. Distribution
  • 4. Mites are minute to small range from 300 to 500 µm in body length. The largest Acari (Red velvet mites: Trombidiidea) may reach lengths 10 – 20 mm i.e., 0.4 – 0.8 inches (Weygoldt, 1998). • The small in size and strongest in evolutionary flexibility of the Acari have permitted mites to colonize most of the aquatic and terrestrial habitats. • As human being, the Acari form a major component of the fauna of the cultivated crops and forests either as pest or as biological control agent (Kiefer et al, 1982 and Gerson et al, 2003).
  • 5. • Moreover, this little animal play an important role in litter, grasslands and agricultural soils, where they recycle minerals (Balogh, 1972). • Walter and Proctor (1999) summarized very effectively the ecological importance and the economic role of mites as “ The average mite is minuscule, barley perceptible to even the sharpest eyes. When enough are present, mites can exert efforts disproportionate to their size.
  • 6. • Mites are microscopic in nature and world wide in distribution and successfully colonized the terrestrial and aquatic habitats. • They are present in all types of abiotic and biotic habitats like planes, mountains, desert, fresh water, salt water and springs, oceans, organic matter and lotter. • Mites are present in large number in soils where they constitute up to 7% of total weight of invertebrate fauna.
  • 9. • The mite are too small in size to be studied like insects. • Therefore, they have been ignored by zoologies and Entomologists. • At the time of Linnaeus, only 30 species had been known. • Mites can be found as ecto-parasites of other invertebrate and vertebrate animals. Morphology
  • 10. • In the mites, the developing integument initially appears as undifferentiated tissues which is covered by thin layer of cuticulin and separated from the epidermis layer by ‘Schmidt layer’. • During developmental process, base of the integument undergoes more conversion and shows from the outside inwards. • An epiculicular layer an underlying Schmidt layer and finally, a basal lamina below the epidermis (Alberti et al, 1981 and Norton et al, 1997). Integument
  • 11. • In addition to micropores, in integument, the body surface of mites also have variety of macropores that play a functional role in secretory and sensory process (Henriot, 1969). Cement layer Basal lamina Epidermis Nucleus Schimdt layer Endoculticle Evolving pore canal Exocuticle Pore canal Inner epicuticle Outer epicuticle Wax layer (According to Norton et al, 1997)
  • 12. • Mostly mites have oval-shaped bodies with two body regions that may appear fused together. • Mostly mites have piercing sucking mouthparts such as Phytophagous and Predatory mites. • Some mites have chewing mouthparts as Stored grain mites. Body Division
  • 13. • Mites can easily be distinguished from their sister class Insecta by the following characters S. No. Features Insects Mites 1. Body Division Head, thorax and abdomen Gnathosoma and Idiosoma 2. Antenna Present Absent 3. Wings Present Absent 4. Legs 3 pairs 4 pairs
  • 14. • The mites lack the true head and conspicuous body segmentation. • The body of mites divided into i. Gnathosoma ii. Idiosoma • The anterior part of the mite body is called as ‘gnathosoma’ that is moveably connected to the idiosoma. • The idiosoma is divided into the anterior podosoma and the posterior opisthosoma.
  • 15. Podosoma Prosoma (Gnathosoma + Podosoma) Sejugal furrow disjugal furrow Propodosoma Idiosoma Hysterosoma Gnathosoma Opisthosoma
  • 17. • Gnathosoma considered the mouth parts which are mainly concerned with feeding and for sensatory purpose. • It is generally located anterior to the body but in some cases, it may be hidden under the propodosoma. • The gnathosoma having the mouthparts differ from a true head in a sense that is lacks the eyes, antennae and brain. • If eyes present, they are located in idiosoma. • It generally consists of chelicerae and pedipals (Krantz, 2009). Gnathosoma
  • 18. Chelicerae • Chelicerae are the main food getting organs. • They are placed dorsally in relation to the opening mouth and commonly consist of three segments known as cheliceral base, digitus fixus and digitus mobilis. • First segment is basal and bears the digitus fixus which is articulated with the distal digitus mobilis dorsally (Grandjean, 1947). • Both digits are provided with teeth on the opposite side of each other.
  • 19. • The chelicerae are used for the cutting and piercing of food. • They vary from three segmented and pincer like appendages of mesostigmata to slender prostigmata. • In phytophagous and parasitic mites, there are modification in chelicerae that result in styliform, hood-like or finely toothed like adapted to pierce plant or animal tissues or attacked on bacterial film (Krantz, 2009).
  • 20. • Bases of the chelicerae may be fused partially or completely to each other to form stylophore as in Tetranychoidea. • The digitus mobilis is modified into a stylet that can pierce the pant cell wall. • Extrusion and retraction movements depends on contraction of dorsoventral idiosomatic muscles and action of retractor muscles respectively. • In some groups, the chelicerae are involved in sperm transfer (Krantz, 2009).
  • 21. Pedipalp • The pedipals are usually called simply “pulp” have five segments beyond coax, usually resembling legs but shorter and primarily sensory in nature rather than locomotors. • The coax portions border the cheliceral bases and form the side walls of the gnathosoma. Their distal segments bear many setae and sometimes claws. 21
  • 22. • Their function is related to searching for and handling food, with the distal segments usually leading to chemosensory and thigmotactic sensory receptors which act as support for feeding activity. • The number of papli vary from species to species as one or two in Astigmata and Prostigmata, three or four in Ixodida, and five in Mesostigmata and Oribatida (Krantz, 2009). • In Tetranychidae, the palpi contain part of silk gland (Alberti and Crooker, 1985).
  • 25. Idiosoma  The second division of the acarine body is the idiosoma.  Often it is ovoid or sac like but occasionally worm like.  A simple pattern divides the idiosoma into anterior propodosoma and the posterior hysterosoma, distinct or not by sejugal furrow.  The region bearing the legs that are derives from embryonal somites known as podosoma (Coineau, 1974 and Krantz, 2009). 25
  • 26. • The first two somites includes the first two pair of legs known as propodosoma, while last part bearing two other pairs of legs known as metapodosoma (Coineau, 1974 and Krantz, 2009). • Organs for digestion, excretion and reproduction are present in idiosoma. • Ocili if present they are also present in idiosoma. • Sclerotized shields or plates that are heavily tanned are present on the cuticle of the idiosoma, normally protect the upper surface of the idiosoma. 26
  • 27. • Setae are also present on the idiosoma. • The number, type, shape, distance and pattern of distribution of these setae on idiosoma is important are used to classify many groups. 27 Setae
  • 28. Legs • Adult and nymphs of mites, except in some Prostigmata and Astigmata, have four pairs of jointed legs and the larval instar has three pairs of legs. • Typically the legs consists of seven segments. • Their names are coxa, trochanter, femur, genu, tibia, tarsus and apotele. • According to systematic group, the coxae may be free or fused with the ventral podosoma and femur may be divided into basifemur and telofemur. 28
  • 29. • One or, more segments of leg 2 and sometimes leg 5 are spurred in males of the Mesostigmata are used to grasp the female during mating. • Different segments of legs bear a number of setae which are arranged in whorls i.e., in rings around the circumference of legs (Evans, 1963). 29
  • 30. • The idiosoma has different types of sensory receptors known as chemoreceptors, mechanoreceptors and photoreceptors with setal structure (Evans, 1992 and Coons, 1999). • The cuticular surface has different pore-like openings, which have a sensory function (Krantz, 2009). • These pores have various shaped but mostly small membrane covered clefts Sensory Receptors
  • 31. Secretory Organs • Pore-like openings located in the cuticle of mites and connected b a ducts to suncuticular gland cells (Alberti and Seeman, 2005). • The nature of the secretory products is heterogenous and varies from cement like to waxy (Evans, 1992 and Coons, 1999). • The secretory products contain vary chemical composition, having monoterpenes, hydrocarbons, esters, aromatics etc and may have various functions that act as pheromones (Mizoguchi et al, 2003).
  • 33. • The life cycle of Acari develops through the eggs and six biological instars: Eggs Prelarva Larva Protonymph Deutonymph Tritonymph Adult • The two resting stages occur between larva and nymph and between nymph and adult known as nymphochrysalis and imagochrysalis respectively (Manson and Oldfiels, 1996). Life cycle
  • 34. • Life cycle of mites depending on the temperature and availability of food. • This cycle usually takes 17 days at 20 OC • Female deposit 5 to 6 eggs per day, with total of 60 to 100 eggs underside of the leaves. • Mostly eggs are oval in shape and reddish, orange or whitish in colour. • Eggs hatch in 3 to 6 days depending on environmental condition. Eggs Spider mite eggs by Scot Nelson
  • 35. • The prelarva also known as prolarva or deutovum and represents a non- feeding stage and lack legs, known as calyptostasis. • It develops inside the egg chorion and consume yolk. • In some groups the prelarva has three pairs of legs, mouthparts and setae, known as elattostasis (Coineau, 1974). • A calyptostasis is reported for Tetranychus urticae and elattostasis for Panthaleidae (Andre and Van Impe, 2012). Prelarva
  • 36. • This is active, feeding instar, a weak, miniature stage. • After eclosion, larvae shed both skin and chorion. • Larva is typical six-legged instar and lack external genitalia. • In some groups, larva directly develops into nymph, known as nymphochrysalis while in other case, larva first changes into protonymph before nymph, known as protochrysalis (Oku et al, 2003). Larva
  • 37. • They represent the first eight-legged nymphal instar that is free living and active. • The protonymph of the Tetranychus kanzawai develops into the deutonymph through a resting stage known as deutochrysalis (Oku et al, 2003). This second nymphal instar in eight legged and resembles t the adult but lack external sexual organ. Protonymph Deutonymph
  • 38. • When tritonymph (third instar) is absent, the deutonymph develops into the adult through resting stage known as teliochrysalis (Oku et al, 2003). Tritonymph • This third nymphal instar is eight legged and uncommon. • When present, it is active and free living. • It is absent in Mesostigmata and in many Prostigmata. • Larva and nymphs complete development in 4 to 9 days depending on temperature.
  • 39. • Generally, the adult instar concludes the biological life cycle. • It is eight legged and sexually functional and live about 30 days. • In T. urticae, the adult instar is absent and is replaced by tritonymph instar, which is able to reproduce by pedogensis (Andre and Van Impe, 2012). • The male and female sex ration vary from species to species as in eriophyoid mites, the percentage of female ranges from 51 to 95 % (Sabelis and Bruin, 1996). Adult
  • 40. • Generally, mites tend to increase in population during the summer as the prefer hot day conditions. • Reproduction in mites is characterized by a haploid-diploid genetic system. The main genetic systems are diplodiploidy, haplodiploidy and thelytoky. • All these systems are sexual. • Mites have very small chromosomes, less than 0.03 mm long. • They have 2 to 12 numbers of chromosomes varies from group to group (Wrensch et al, 1994)
  • 41. Life stages of Chaetodactylus krombeini (Astigmata) by Ron Ochoa and Gary Bauchan, USDA-ARS
  • 43. The mites can be divided into four main groups according to their economic importance i.e., i. Phytophagous mites ( plant feeding mites) ii. Predatory mites. iii. Stored grain and stored product mites. iv. Parasites mites (mites of medical and veterinary importance) Types
  • 45. • Phytophagous mites infest and damage cultivated crops, vegetables, orchards, ornamental plants, forest trees and also wild vegetation. • Worldwide, around 7500 species of phytophagous mites are known which damage plants. • They are usually opaque white, translucent, slow moving and short legged. • They infest the leaves, inflorescence and developing tissue by sucking the sap with their stylet like chelicerae. Phytophagous Mites
  • 46. • These mites cause both qualitative and quantitative losses. • In various crops like rice, sugarcane, brinjal, okra and chillies, 10-30% losses are reported due to spider mites. • The damage is more severe in case of mangoes where it may reach up to 50-80 % (Chhillar et al., 2007). • Tetranychus urticae can damage 18-22 cells in a minute (Liesering 1960). • Their feeding results in leaf stippling, blotching, curling and twisting.
  • 47. • They also modify the developing tissue by forming galls and injecting toxins (Jeppson, Baker and Keifer, 1975). • The symptoms may be irregular deformities of growth pattern, rosette type growth, irregular leaf or fruit growth, total destruction of growing tips etc. • All stages of mites except eggs can transmit virus and cause diseases. • Different viral diseases caused are wheat streak mosaic, fig mosaic, potato virus, tobacco ring spot and tobacco mosaic virus etc.
  • 48. • Certain soil inhabiting mites carry fungal spores of various root crop diseases like fungal rot of garlic and onion (Evans, 1992). The damage pattern of mites belonging to these families is as follows
  • 49. 1. Tetranychidae • Both nymphs and adults feed on the leaf surface. • White spots are formed on the leaves in later stages of infestation and general chlorosis occurs in patches. • Tetranychid mites secrete certain substances into plant cells. • Puncturing of new cells proceeds from one spot to another in the form of a circle, which results in the formation of small rounded chlorotic spots.
  • 50. . • It is estimated that roughly 50 per cent of the mass of an adult female spider mite is eaten per mite per hour. • The numbers of photosynthetically active leaf cells that are punctured and emptied per mite, are 100 cells per minute. • At the macroscopic level, damage from mite feeding can cause leaf bronzing, stippling or scorching as well as extensive webbing on leaf surface and black fecal dots are seen on the leaf surface.
  • 51. • Severe spider mite infestation cause major reductions in plant growth rates, flower formation and yield. • Penetration of cells by mite stylets and injection of saliva cause both mechanical damage and changes in cell cytology, physiological and biochemical processes of non-punctured adjacent cells. • In case of severe infestation, plants show yellowing and general drying of leaves, which drop prematurely.
  • 53. 2. Eriophyidae: The mites occur on all parts of a plant and may or may not exhibit the symptoms of damage. Based on type of injury, they have been classified as under: a. Gall Formers • Due to feeding on various plant parts hypertrophy of cells occur. • It results into formation of galls on leaves, flower buds and stem. • Different types of galls like pouch galls (Pongamia sp.), bead galls (Ficus sp.), finger galls (Pongamia sp.)
  • 55. b. Leaf Rollers These mites roll the whole leaves or only edges of leaves and feed within the rolls. c. Erineum Formers Due to feeding by mites, epidermal layer of cells produce hair like out growths, which produce the erineum. d. Blister Mites Some species cause formation of blisters on the leaf sheath and feed within.
  • 56. Leaf Rollers Erineum Formers Blister Mites
  • 57. 3. Tenuipalpidae: • These mites generally feed on the ventral surface of leaves near the midrib or veins. • There is bronzing and rusting symptoms on the lower surface of leaves due to feeding of nymphs and adults. • Some species form galls on the leaves and stems of plants.
  • 58. 4. Tarsonemidae: • They usually infest the tender portion of plants and suck the sap from buds, leaves, shoots, flowers and stem sheath. • They cause curling, crinkling and brittleness of foliage but shows little leaf symptoms. • The injury caused by this group is often mistaken as a disease symptoms caused by pathogenic microorganisms.
  • 59. 5. Tuckrellidae: • This is the smallest phytophagous family, which includes four species. • These are brightly colored having fan like dorsal body setae and long whip like caudal setae. • The mites do not have much importance, as they do not cause any economic damage (Chhillar et al., 2007).
  • 61. Predatory Mites There is a large group of predatory mites which feed on other harmful mites, small soft bodied insects, their eggs and occasionally on nematodes (Krantz, 1978). These mites are usually red, yellow and green, long legged and fast moving.
  • 62. 1. Phytoseiidae • This group has received maximum attention globally as they are reported as predators of phytophagous mites and small insects. • These mites are whitish/ creamish/ reddish or light brownish in color, fast moving and abundant in nature. • They have very long legs, which help them to run very fast. • They have wide range of food habits from carnivores to non-animal food (pollen, honey, nectar, plant sap) eaters.
  • 63. • These mites have several advantages over other predatory mites because of High fecundity  Abundant availability  Good searching ability  Dispersal rate  Adaptability to different ecological niches  High degree of prey specificity
  • 64. 2. Stigmaeidae • These are probably next to phytoseiidae as far as predatory efficiency is concerned. • These are yellowish/reddish/light brownish in color • Ovoid or elongated in shape which occupy various habitats. • These mites cannot run very fast hence these are used for controlling slow moving mites and for destruction of mite eggs. • Agistemus spp. are found to be of high promise as biocontrol agents.
  • 66. 3. Anystidae • These are round, long legged, reddish and soft bodied mites. • They are very fast moving and start making whirling movement as soon as touched.
  • 67. 4. Bdellidae • These are fast moving, medium sized and reddish in colour. • They prey upon phytophagous mites and small insects like collembola. • So far, no species of high predatory potentiality has been noticed in field.
  • 68. 5. Cheyletidae • These are free living predators of phytophagous, stored and house dust mites. • Comb like or sickle like setae are present on pedipalp tarsus. • Cheletogenes, Cheyletus, Hemicheyletia, Paracheyletia are important genera whose interaction with phytophagous mites are well documented (Chhillar et al., 2007).
  • 69. 6. Cunaxidae • These are reddish/yellowish/ brownish mites, fairly fast moving and are known to be active predators of phytophagous mites. • They have very strong and thorny mouthparts but their number is limited in nature. • Some of the mites are known to fasten their preys with silken threads secreted by their mouthparts.
  • 70. Stored Grain and Stored Product Mites
  • 71. Stored Grain and Stored Product Mites Mites of stored grain and stored product are of great economic importance. These mites infest and cause damage to goods in following ways: • Stored grain cereals. • Seeds of all kind • Bulbs, tubers and decaying material • Fresh, cultivated and stored mushrooms • Dried fruits of all kind 71
  • 72. Direct Damages • Some free living mites live in the stored grains and their products where they multiply rapidly and attain the status of pests. • Food products, especially the cereals are liable to be infested directly. • The mites penetrate the seeds through cracks, tear the outer covering of embryo and eat away cavities where they develop and multiply. 72
  • 73. • These mites feed on the grain itself or fungi growing on it. • These mites have blunt chelicerae for scraping and gouging the food. • Majority of these mites feed on the embryo while some can feed on cotyledons as well. • Due to the attack of these mites quality of the stored grains is affected more badly as compared to the quantity. 73
  • 74. Indirect Damages • These mites cause damage to stored grains products by raising the moisture content and generating sufficient heat which favors growth and infections of pathogens. • They contaminate the space between the grains with their dead bodies, cast skins and excrement hereby hindering the circulation of the air in the stock. • They also act a vectors of fungal and bacterial diseases and spread those through out the whole mass. 74
  • 75. • The flour which is prepared from infested grains is more acidic in nature, bitter taste, stagnant smell, more hygroscopic and has a tendency to stick togather. • They are clumsy, slow in movement and almost incapable of covering large distance by themselves. • They can undergo a transitory quiescent stage which is very difficult to control. • The mites of stored of stored grain include following important families 75
  • 76. 1. Acaridae • Inhalation or contact on the skin or mucus membranes of the eyes can induce allergic reactions. • These mites also occur in bread, pancakes, cakes, pizza, pasta, and bread made from ingredients contaminated with mites. • Humans have had anaphylactic reactions after eating these mite contaminated foods.
  • 77. • This mite also known as flour mite, which is pale greyish white in color with pink legs. • The males are from 0.33–0.43 mm in length and the female is from 0.36– 0.66 mm in length . • Flour mites contaminate grain and flour by allergens and they transfer pathogenic microorganisms. • Foodstuffs acquire a sickly sweet smell and an unpalatable taste. 2. Tyroglyphidae
  • 78. • When infested feeds fed by animals , they show reduced feed intake, diarrhea, inflammation of the small intestine, and impaired growth. • If a person is bitten from a flour mite they might suffer a reaction called Baker's itch.
  • 79. • Carpoglyphus lactis is a stored product mite infesting saccharide rich stored commodities including dried fruits, wine, beer, milk products, jams and honey. • The association with micro-organisms can improve the survival of mites on dried fruits. 3. Carpoglyphidae
  • 80. • This mite also known as Furniture mite, is found in foods and grains in warehouses. • In homes, it flourishes in infested foodstuffs and in damp areas. • It has a soft, cream-white body. • For both sexes, the body bristles are very long and feathery, 0.3 – 0.7 mm in length. • Its main food sources are flour, cereals, other cereal products and fungi. 4. Glycyphagidae
  • 81. 5. Pyroglyphidae • These mites feed on stored products such as grain, cereals, nuts, dried fruit, cheeses and pet foods, but only in conditions of high relative humidity. • Each species is the source of multiple potent allergens that sensitize and trigger allergic reactions cause perennial rhinitis, asthma and atopic dermatitis.
  • 83. Parasitic Mites  Some mites are parasites of man, animal, other arthropods ,poultry birds and cause many disease in them.  These are either ecto-parasites and endo-parasites.  They have tearing and piercing type of that cause scaling and crushing around the legs of poultry birds.  Northern fowl mite and red chicken mite are very important parasites of poultry birds all over the world. 83
  • 84. • Psoroptes species (non burrowing mites) cause sheep scab. • They damage wool and sometimes the loss of animal may also occur. • Scrub typhus is caused by chigger mites • Even human beings are not free from their effect Sarcoptes scabies causes itching in human. • Trombicula akamushi and dust mite cause lung disease like asthma. 84 Scrub typhus
  • 85. • Trombicula akamushi and dust mite cause lung disease like asthma. • These mites are also vectors of internal parasites like tape worm and filarial worms. e.g, Family Oribatidae, Acrididae and Pyemotidae etc. • Gamasid mites are considered as vectors of epidemic hemorrhagic fever virus. • Leptotombidiumni akamushi and L. deliense are transmitters of scrub typhus in man. 85
  • 86. Biology • Mites associated with mammals and birds are usually translucent or whitish in color so they are difficult to detect. • After feed on host’s blood their color changes to reddish brown. • Life cycle include egg, larva , two nymphal stages and adult. 86
  • 87. Nature of Damage • These mites act as causative agents for anaemia. • Pneumonia crusting of skin, hair loss, decreased production, death of host occurs in severe case of inflammation. • Inflammation, scratching and irrition lead to secondary infection. • Sarcoptes scabei in case of heavy infestation may cause death of the animal. • The life cycle of these mites generally require 2 to 17 days. 87
  • 88. Mites associated with honeybees • There are certain mites which are associated with honey bees. • These mites maybe external parasites like varroa destructor, varroa jacobsoni and internal parasites like Acarapis woodi. • Some mites which cause the bees as carries to move from one place to another are also present around the bee hives. 88
  • 89. Families of Parasitic mites • Family sarcoptidae mites are tiny arachinids that are parasites of mammals and humans • These cause infection and the mites spend their life in the epidermis of the skin of their host causing various skin disorders. 89
  • 90. 1. Psoroptidae • Well-known sheep mange mites causing serious damage to fleece and can even cause deaths. 90
  • 91. 2. Knemidocoptidae • Species of this family burrow in the non- feathered areas around the break, eyes, vent and legs of birds causing tiny non-itching wart-like lesions. 91
  • 92. 3. Pyroglyphidae • Members of the family are the well- known house dust mites causing asthma, rhinitis and allergies in human due to an antigen they produce. • Where the humidity is very high. 92
  • 93. 4. Demodicidae • Members of this family cause symptoms in mammals characterized by itching, inflammation and other skin disorders. 93
  • 94. Management of Mites Monitoring • Mites are small and difficult to see with the naked eye. • Using a 10x hand lens will enhance your ability to see mites and their eggs. • Spider mites can be detected by infestations such as cast skins and webbing. • The mites, eggs and cast skins can seen under surfaces of the leaves. • Mites can also be sampled using the "beat method" whereby plant parts are beaten onto an white paper. • This method works particularly well for evergreens and small-leaved plants.
  • 95. Cultural Control • Use of clean, pest free plants and cuttings is essential. • Knowledge of mite prone species/ varieties can enable the grower to avoid these plants or to monitor these most closely as "indicator" plants. • Watering practices affect spider mite populations. • Drought-stressed plants are most susceptible to mite outbreaks • Overhead sprinkler systems are less favorable for mite outbreaks.
  • 96. Biological Control • A number of predatory mite species are available for mites control. • Phytoseiulus persimilis, Mesoseiulus longipes, Metaseiulus occidentalis and Neoseilus californicus have been marketed for released into greenhouses. Occasionally they are applied as Biotic Insecticides using an Inundative Release to try to bring down an existing population.
  • 97. Physical Control • High-volume, high pressure water sprays through some application devices such as the Water Wand and Jet All-Water Wand can displace many mites from foliage and reduced mites population for short period of time. Chemical Control • Different miticides have different performance characteristics. • For example: Avid penetrates into treated foliar plant cells. • Pentac is relatively slow acting and has ovicidal activity • Sulfur, registered as a Miticide on some vegetable crops but highly phytotoxic.
  • 98. Resistance Management: • Use miticides only when mites or plant injury they cause is first detected. • Use the lowest effective miticide rates initially. • Use long rotation of miticides with different modes of activity. • Use of tank mixtures containing two or more products with different modes of action on the mite's nervous system.
  • 99. References Vacante, V. 2016. The Handbook of Mites of Economic Plants. Professor of General and Applied Entomology. Mediterranean University of Reggio Calabria, Italy Gerson, U. et al. 2003. Pest Control by Mites (Acari): Present and Future. Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot. Vol. 4: pp. 371-394 Krantz, G. W. and Walter, D. E. 2009. A Manual of Acarology. Third Edition. Texas Tech University Press; Lubbock, Texas Zhang, Z.Q. 2011. Authorship and Date of Two Family-group Names in the Trombidiidae (Acariformes: Parasitengona). Systematic & Applied Acarology, Vol. 16 pp. 192-192 Balogh, P. 1985. Some interesting Oribatuloidea Wooley, 1956 from the Hawaiian Islands (Acari, Oribatei). Opusc. Zool. Budapest pp.19-20 and 57-61. Balogh, J. 1972. The Oribatid Genera of the World. Budapest, Hungary, Akademiai Kiado Walter, D. E. and Proctor H. C. 2001. Mites in Soil, An Interactive Key to Mites and Other Soil Microarthropods. ABRS Identification Series. Collingwood, Victoria: CSIRO Publishing. Grandjean, F. 1947. The Hairy Origin of the Jaws and the Chaetotaxy of the Mandible in Action Chitinous Mites. Proceedings of the Sessions of the Academy of Sciences. 1251-1254.
  • 100. Alberti, G. and Crooker, A.R. 1985. Internal Anatomy. Spider mites. Their Biology, Natural Enemies and Control. World Crop Pests. Vol. 1A. Elsevier, Amsterdam, pp. 29-62 Keifer, H.H., Baker, E.W., Kono, T., Delfinado, M. and Styer, W.E. 1982. An Illustrated Guide to Plant Abnormalities Caused by Eriophyid Mites in North America. USDA, ARS, Agricultural Handbook, 573, 1-178. Weygoldt, P. 1998. Evolution and systematics of the Chelicerata. Experimental & Applied Acarology. Institut for Biologie (Zoologie), Albert-Ludwigs-Universit¨at, Hauptstraße Freiburg, Germany 63-79 Norton, R.A and Phillips, T.L. 1997. Oribatid Mites And the Decomposition of Plant Tissues in Paleozoic Coal-Swamp Forests. SEPM Society for Sedimentary Geology. Vol. 12, pp. 319-353 Coineau, Y. 1974. New Methods for The Study of The Morphology of Chitinous Structures of Mites. A quarterly journal of acarology. Vol. 16 pp. 4-10 Evans, D et al. 1992. Acari: The Mites. Version 13 in The Tree of Life Web Project Oldfield G.N. 1996 Spermatophore deposition, Mating Behaviour and Population Mating Structure. Eriophyoid Mites: Their Biology, Natural Enemies and Control. World Crop Pests. Elsevier Science Publishing, Amsterdam, The Netherlands. Vol 6, pp 185-198
  • 101. Andre, H.M. and Van Impe, G. 2012. The Missing Stase in Spider Mites (Acari: Tetranychidae): When The Adult is Not the Imago. A quarterly journal of acarology. Vol. 52, pp. 3-16 Oku, K. et al. 2003. Spider Mites Assess Predation Risk by Using The Odor of Injured Conspecifics. Journal of Chemical Ecology, Vol. 29. Sabelis, M.W. and Bruin, J. 1996. Eriophyoid Mites: Their Biology, Natural Enemies and Control. World Crop Pest Chhillar, B.S., Gulati, R. and Bhatnagar, P., 2007. Agricultural acarology. Daya Publ. House, Delhi, 355pp. Mizoguchi, A. et al. 2003. α-Acaridial A Female Sex Pheromone From an Alarm Pheromone Emitting Mite Rhizoglyphus robini. Journal of Chemical Ecology, Vol. 29

Editor's Notes

  1. `