Upcoming SlideShare
×

# Chapter 4 Section 9 Scientific Notation

5,350 views

Published on

Chapter 4, Section 9: Scientific Notation

1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
5,350
On SlideShare
0
From Embeds
0
Number of Embeds
71
Actions
Shares
0
73
0
Likes
1
Embeds 0
No embeds

No notes for slide

### Chapter 4 Section 9 Scientific Notation

1. 1. Section 4.9: Scientific Notation
2. 2. Patterns in Scientific Notation <ul><li>5 x 10 4 = 5 x 10,000 = 50,000 </li></ul><ul><li>5 x __ = 5 x 1,000 = 5,000 </li></ul><ul><li>5 x 10 2 = 5 x ___ = 500 </li></ul><ul><li>5 x 10 1 = 5 x 10 = 50 </li></ul><ul><li>5 x 10 0 = 5 x 1 = 5 </li></ul><ul><li>5 x 10 __ = 5 x .1 = 0.5 </li></ul><ul><li>5 x 10 -2 = 5 x ___ = 0.05 </li></ul><ul><li>_ x 10 -3 = 5 x .001 = 0.005 </li></ul><ul><li>5 x 10 -4 = 5 x .0001 = 0.0005 </li></ul>
3. 3. Did You See It? <ul><li>5 x 10 4 = 5 x 10,000 = 50,000 </li></ul><ul><li>5 x 10 3 = 5 x 1,000 = 5,000 </li></ul><ul><li>5 x 10 2 = 5 x 100 = 500 </li></ul><ul><li>5 x 10 1 = 5 x 10 = 50 </li></ul><ul><li>5 x 10 0 = 5 x 1 = 5 </li></ul><ul><li>5 x 10 -1 = 5 x .1 = 0.5 </li></ul><ul><li>5 x 10 -2 = 5 x .01 = 0.05 </li></ul><ul><li>5 x 10 -3 = 5 x .001 = 0.005 </li></ul><ul><li>5 x 10 -4 = 5 x .0001 = 0.0005 </li></ul>
4. 4. Scientific Notation <ul><li>Is a shorthand way of writing numbers using powers of 10. (Exponents!) </li></ul><ul><li>Scientific notation lets you know the size of a number without having to count digits. </li></ul><ul><li>Write a number in scientific notation as the product of two factors. </li></ul><ul><li>7,500,000,000,000 = 7.5 x 10 12 </li></ul><ul><li>The exponent is the number of times the decimal is moved so that it lies between the new ones and tenths place and the number to the left of the decimal is between 1 and 10. </li></ul>
5. 5. Scientific Notation <ul><li>10 to the 3 rd power means the numbers in the thousands. </li></ul><ul><li>10 to the 6 th power means the numbers is in the millions. </li></ul><ul><li>10 to the 9 th power means the number is in the billions. </li></ul>
6. 6. Visitors to the Statue of Liberty <ul><li>About 4,200,000 people visit the Statue of Liberty every year. Write this number in scientific notation. </li></ul><ul><li>Move the decimal point to get a decimal greater than 1 but less than 10. </li></ul><ul><li>4,200,000  4.200000 </li></ul><ul><li>Drop the zeros after the 2. </li></ul><ul><li>4.2 </li></ul><ul><li>The decimal point removes 6 places to the left. </li></ul><ul><li>Use 6 as the exponent of 10. </li></ul><ul><li>There are 4.2 x 10 6 visitors every year. </li></ul>
7. 7. Convert to scientific notation. <ul><li>54,500,000 </li></ul><ul><li>723,000 </li></ul><ul><li>602,000,000,000 </li></ul><ul><li>0.00021 </li></ul><ul><li>0.00000005 </li></ul><ul><li>0.0000000000803 </li></ul>
8. 8. From Scientific to Standard Notation <ul><li>You can change expressions from scientific notation to standard notation by simplifying the product of the two factors. </li></ul><ul><li>8.9 x 10 5 = </li></ul><ul><li>Add zeros while moving the decimal point. </li></ul><ul><li>Rewrite in standard notation. </li></ul><ul><li>890,000 </li></ul>
9. 9. Write in Standard Notation <ul><li>2.71 x 10 -6 = </li></ul><ul><li>3.21 x 10 7 = </li></ul><ul><li>5.9 x 10 -8 = </li></ul><ul><li>1.006 x 10 10 = </li></ul><ul><li>Hint: negative exponents make numbers very small, where as positive exponents make numbers very large. </li></ul>
10. 10. Comparing and Ordering <ul><li>First, compare the powers of 10. </li></ul><ul><li>Then, compare the decimals. </li></ul><ul><li>If they are NOT in correct Scientific Notation in the beginning, then convert them into CORRECT scientific notation BEFORE comparing and ordering. </li></ul>
11. 11. Compare and Order These: <ul><li>0.064 x 10 8 312 x 10 2 0.58 x 10 7 </li></ul><ul><li>Write each in scientific notation. </li></ul><ul><li>6.4 x 10 6 3.12 x 10 4 5.8 x 10 6 </li></ul><ul><li>Order the powers of 10. Arrange the decimals with the same power of 10 in order. </li></ul><ul><li>3.12 x 10 4 5.8 x 10 6 6.4 x 10 6 </li></ul><ul><li>Write the original numbers in order. </li></ul><ul><li>312 x 10 2 .58 x 10 7 0.064 x 10 8 </li></ul>
12. 12. Calculating with Scientific Notation <ul><li>You can multiply numbers in scientific notation using the Rule for Multiplying Powers with the Same Base. </li></ul><ul><li>In this case, our SAME BASE, is 10. </li></ul><ul><li>To multiply exponents with the same base, then just add the exponents. </li></ul><ul><li>Example: 10 7 x 10 2 = 10 7+2=9 = 10 9 </li></ul>
13. 13. Multiplying Scientific Notation <ul><li>3 x 10 -7 and 9 x 10 3 (Multiply and express result in scientific notation) </li></ul><ul><li>(3 x 10 -7 )(9 x 10 3 ) = 3 x 9 x 10 -7 x 10 3 </li></ul><ul><li>27 x 10 -7 x 10 3 </li></ul><ul><li> 27 x 10 -4 </li></ul><ul><li> 2.7 x 10 1 x 10 -4 </li></ul><ul><li> 2.7 x 10 -3 </li></ul>
14. 14. Multiply: <ul><li>(4 x 10 4 )(6 x 10 6 ) </li></ul><ul><li>(7.1 x 10 -8 )(8 x 10 4 ) </li></ul>