5.3 And 5.4 Operations With Fractions

3,241 views

Published on

5.3 and 5.4: Operations with Fractions.

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
3,241
On SlideShare
0
From Embeds
0
Number of Embeds
27
Actions
Shares
0
Downloads
72
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

5.3 And 5.4 Operations With Fractions

  1. 1. The 44 th President of the United States of America.
  2. 2. Chapter 5 Section 3: Adding and Subtracting Fractions. November 5 th , 2008 The Day After Election Day.
  3. 3. Same Denominator, Easy Cheesy <ul><li>When the DENOMINATOR is the same </li></ul><ul><li>just add or subtract </li></ul><ul><li>the NUMERATOR. </li></ul>
  4. 4. Like These <ul><li>3/7 + 1/7 = </li></ul><ul><li>2/k + 3/k = </li></ul><ul><li>7/10 – 3/10 = </li></ul><ul><li>(11/y) + (-5/y) = </li></ul>
  5. 5. From Yesterday <ul><li>To add or subtract fractions with unlike denominators: </li></ul>Write the fractions with a common denominator (LCM). A/B + C/D = ? If you can’t find the LCM, make up one.
  6. 6. Simplify Each: Difference or Sum <ul><li>-7/8 + ¾ = </li></ul><ul><li>1/8 – 5x/6 = </li></ul><ul><li>3/7 + 2/m = </li></ul>
  7. 7. Adding/Subtracting/Mixed Numbers <ul><li>Before Adding/Subtracting Mixed Numbers , Make Them Into Improper Fractions! </li></ul>5 ¾ + 7/8 = 25 1/3 + 3 5/6 = 2 3/8 + 7/16 =
  8. 8. Chapter 5 Section 4: Multiplying and Dividing Fractions
  9. 9. Multiplying Rational Numbers <ul><li>Rational Numbers are Numbers that can be EXPRESSED as a Fraction, or Ratio! </li></ul>Multiply the Numerators and Denominators (2/5)(1/3) = (-5/6)(2/3) =
  10. 10. Simplify Before You Multiply <ul><li>When a Numerator AND Denominator have COMMON FACTORS, you can Simplify before Multiplying. </li></ul>(9/15)(5/9) = (y/4)(8/11)=
  11. 11. Multiply and Simplify <ul><li>(-5/14)(21/25) = </li></ul><ul><li>(2x/9)(3/4) = </li></ul><ul><li>(2/3)(6/7) = </li></ul>
  12. 12. Multiplying Mixed Numbers? <ul><li>Convert to an </li></ul><ul><li>IMPORPER FRACTION , </li></ul><ul><li>then SIMPLIFY . </li></ul>
  13. 13. Word Problem <ul><li>Central Park in New York City is a rectangle. It is approximately 2 ½ miles long and ½ miles wide. What is the area of Central Park? (Formula: A = LW) </li></ul>
  14. 14. Find Each Product <ul><li>(3 ¾)(2/5) = </li></ul><ul><li>(2/3)(1 2/7) = </li></ul><ul><li>(-2 5/6)(1 3/5) = </li></ul>
  15. 15. Dividing Rational Numbers <ul><li>3  ½ = Is the same as saying: </li></ul><ul><li>“How many haves are in three wholes?” </li></ul>
  16. 16. Reciprocal <ul><li>2/1 (or 2) and ½ are RECIPROCALS . </li></ul><ul><li>Every number can be written as RATIONAL number, which means it has a RECIPROCAL. </li></ul>
  17. 17. Reciprocal <ul><li>The PRODUCT of two RECIPROCALS is 1. </li></ul>Dividing Fractions 
  18. 18. To Divide Fractions… <ul><li>Make the SECOND fraction into it’s RECIPROCAL . </li></ul><ul><li>Change the Division operation INTO a MULTIPLICATION operation. </li></ul><ul><li>Then MULTIPLY . </li></ul><ul><li>Don’t forget to Simplify If Possible ! </li></ul>
  19. 19. Divide These Fractions <ul><li>(2/9)  (2/5) = </li></ul><ul><li>(x/3) / (x/4) = </li></ul><ul><li>(-1/4)  (1/2) = </li></ul>
  20. 20. Divide This! <ul><li>(5x/9) / (10x/27) = </li></ul><ul><li>(-1 3/5)  (-1 1/5) = </li></ul><ul><li>(12 ½) / (1 2/3) = </li></ul>
  21. 21. Assignment #34 <ul><li>Page 238: 21-35 Odd. </li></ul><ul><li>Page 243: 19-49 Odd. </li></ul>

×