Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
×

# 11.3 Distance Midpoint Formulas

3,913 views

Published on

Chapter 11, Section 3: Distance and Midpoint Formulas

Published in: Education, Technology
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• hiunj

Are you sure you want to  Yes  No
Your message goes here

### 11.3 Distance Midpoint Formulas

1. 1. Warm Up: Find the missing length to the nearest tenth of a unit. Both triangles are right triangles. Triangle 1: Legs: 8ft and 12ft; find Hypotenuse. Triangle 2: Leg: 10mm, Hypotenuse: 25mm; find Leg.
2. 2. Distance and Midpoint Formulas Chapter 11, Section 3
3. 3. Finding Distance Use Pythagorean Theorem to find the length of a segment on a coordinate plane. Make a Right Triangle to do this. Or, just use the Distance Formula that is based off of Pythagorean's Theorem. Distance = √ (x ₂ – x ₁ ) ² + (y ₂ – y ₁ ) ² X and Y are from coordinate points. ex. (5, -2)
4. 4. Find the Distance between A( 6 , 3 ) and B( 1 , 9 ) D = √ ( x ₂ – x ₁ ) ² + ( y ₂ – y ₁ ) ² It doesn't matter which coordinate is 1 or 2. Because a -#² = +# D = √ ( 6 ₂ – 1 ₁ ) ² + ( 9 ₂ – 3 ₁ ) ² D = √ ( 5 ) ² + ( 6 ) ² D = √ ( 25 + 36 ) D = √ (61) D ≈ 7.8 (rounded to tenth)
5. 5. Use Distance Formula D = √ ( x ₂ – x ₁ ) ² + ( y ₂ – y ₁ ) ² Distance 1: ( 3 , 8 ), ( 2 , 4 ) Distance 2: ( 10 , -3 ), ( 1 , 0 )
6. 6. Use Distance Formula to Determine Perimeter Find Distance between each point, then add them to find perimeter. AB = ? BC = ? CD = ? DA = ? D (3, 3) A (0, -1) B (8, 0) C (9, 4) √ 65 √ 17 √ 37 √ 25 = 5 These numbers add up to 23.2681259 units, which is the perimeter.
7. 7. Midpoint Formula The midpoint of a segment is the POINT M. The midpoint is a dot with a coordinate (x, y). M = ( [x ₁ + x₂]/2 , [y₁ + y₂]/2 ) Take the x coordinates, add, divide by 2 = new x coordinate. Take the y coordinates, add, divide by 2 = new y coordinate. M = ( x , y )
8. 8. Find the Midpoint M = ( [x ₁ + x₂]/2 , [y₁ + y₂]/2 ) Find the midpoint between: G( -3 , 2 ) and H( 7 , -2 ) ( [ -3 + 7 ]/2, [ 2 + -2 ]/2 ) ( [4]/2, [0]/2 ) ( 2, 0 ) ← Midpoint between G and H
9. 9. Find the Midpoints Midpoint between A(2, 5) and B(8, 1): Midpoint between P(-4, -2) and Q(2, 3):
10. 10. Assignment #32 Pages 575-576: 1-6 all, 8-21 all.