3 Lan Kinerja Tinggi 1


Published on


Published in: Education, Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

3 Lan Kinerja Tinggi 1

  2. 2. FDDI 1. FIBER DISTRIBUTED DATA INTERFACE (FDDI)     merupakan LAN token ring CDDI     kapasitas penyaluran data 100 Mbps     jangkauan 200 km     mampu melayani 1000 stasiun FAST ETHERNET  memakai serat optik multimode dengan light- emitting diode (LED) [FORD01] [TANE97] GIGABIT ETHERNET 100VG- ANYLAN HPPI FIBRE CHANNEL
  4. 4. FDDI The Medium Access Control (MAC) : MAC meliputi pengaturan frame format, token handling, addressing, algorithms for calculating cyclic redundancy check (CRC) value, and error- CDDI recovery mechanisms. The Physical Layer Protocol (PHY) : FAST data encoding/decoding procedures, clocking ETHERNET requirements, and framing The Physical-Medium Dependent (PMD) : GIGABIT ETHERNET the characteristics of the transmission medium, including fiber-optic links, power levels, bit- error rates, optical components, and connectors. 100VG- ANYLAN The Station Management (SMT) : FDDI station configuration, ring configuration, and ring control features, including station HPPI insertion and removal, initialization, fault isolation and recovery, scheduling, and statistics collection [FORD01]. FIBRE   CHANNEL
  5. 5. FDDI 1.3 FDDI vs. IEEE dan OSI MODEL FDDI mirip dengan standar IEEE 802.3 CDDI Ethernet dan IEEE 802.5 Token Ring serta OSI model, yakni pada layer fisik dan data FAST link. ETHERNET GIGABIT Perbedaannya kalau Token Ring tidak ETHERNET memperbolehkan stasiun membuat token baru sebelum token datang kembali, sedangkan FDDI 100VG- ANYLAN mengijinkan stasiun membuat token baru setelah stasiun tersebut menyelesaikan HPPI transmisinya. [TANE97] FIBRE CHANNEL
  6. 6. FDDI 1.4 FDDI Station-Attachment Types FDDI memiliki tiga pilihan koneksi : CDDI a.single-attachment station (SAS): attaches to only one ring (the primary) FAST ETHERNET through a concentrator. One of the primary advantages of connecting devices with SAS GIGABIT attachments is that the devices will not ETHERNET have any effect on the FDDI ring if they 100VG- are disconnected or powered off. ANYLAN Concentrators will be discussed in more detail in the following discussion. HPPI FIBRE CHANNEL
  7. 7. FDDI b.dual-attachment station (DAS): each FDDI DAS has two ports, designated A CDDI and B. These ports connect the DAS to the dual FDDI ring. Therefore, each port FAST provides a connection for both the primary ETHERNET and the secondary ring. As you will see in GIGABIT the next section, devices using DAS ETHERNET connections will affect the ring if they are disconnected or powered off. 100VG- ANYLAN HPPI FIBRE CHANNEL
  8. 8. FDDI c.Concentrator an FDDI concentrator (also called a dual- CDDI attachment concentrator [DAC]) is the building block of an FDDI network. It attaches directly to both the primary and FAST ETHERNET secondary rings and ensures that the failure or power-down of any SAS does not GIGABIT bring down the ring. This is particularly ETHERNET useful when PCs, or similar devices that are frequently powered on and off, connect 100VG- to the ring. ANYLAN HPPI FIBRE CHANNEL
  9. 9. FDDI 1.5 FDDI fault tolerance a. Dual Ring CDDI If a station on the dual ring fails or is powered down, or if the cable is damaged, the FAST dual ring is automatically wrapped (doubled ETHERNET back onto itself) into a single ring. GIGABIT ETHERNET 100VG- ANYLAN HPPI FIBRE CHANNEL
  10. 10. FDDI CDDI FAST ETHERNET GIGABIT ETHERNET 100VG- When a cable failure occurs, devices on either side ANYLAN of the cable fault wrap. Network operation continues for all stations. It should be noted that HPPI FDDI truly provides fault-tolerance against a single failure only. When two or more failures occur, the FDDI ring segments into two or more FIBRE CHANNEL independent rings that are unable to communicate with each other.
  11. 11. Optical Bypass Switch FDDI CDDI FAST ETHERNET GIGABIT An optical bypass switch provides continuous dual-ring ETHERNET operation if a device on the dual ring fails. This is used both to prevent ring segmentation and to eliminate failed 100VG- stations from the ring. The optical bypass switch performs ANYLAN this function through the use of optical mirrors that pass light from the ring directly to the DAS device during HPPI normal operation. In the event of a failure of the DAS device, such as a power-off, the optical bypass switch will pass the light through itself by using internal mirrors and thereby maintain the ring's integrity. The FIBRE CHANNEL benefit of this capability is that the ring will not enter a wrapped condition in the event of a device failure.
  12. 12. b.Dual Homing FDDI Critical devices, such as routers or mainframe hosts, can use a fault-tolerant technique called dual homing to provide additional redundancy and to help guarantee CDDI operation. In dual-homing situations, the critical device is attached to two concentrators. Figure shows a dual- homed configuration for devices such as file servers and FAST routers. ETHERNET GIGABIT ETHERNET 100VG- ANYLAN One pair of concentrator links is declared the active HPPI link; the other pair is declared passive. The passive link stays in back-up mode until the primary link (or the concentrator to which it is attached) is determined to FIBRE have failed. When this occurs, the passive link CHANNEL automatically activates.
  13. 13. 1.6 FDDI Frame Format FDDI The FDDI frame format is similar to the format of a Token Ring frame. This is one of the areas where FDDI borrows heavily from earlier LAN technologies, such as Token Ring. CDDI FDDI frames can be as large as 4,500 bytes. FAST ETHERNET GIGABIT ETHERNET FDDI Frame Fields 100VG- Preamble---A unique sequence that prepares each station for an ANYLAN upcoming frame. Start Delimiter---Indicates the beginning of a frame by employing a signaling pattern that differentiates it from the rest of the frame. HPPI Frame Control---Indicates the size of the address fields and whether the frame contains asynchronous or synchronous data, among other control information. Destination Address---Contains a unicast (singular), multicast FIBRE (group), or broadcast (every station) address. As with Ethernet CHANNEL and Token Ring addresses, FDDI destination addresses are 6 bytes long.
  14. 14. 1.6 FDDI Frame Format FDDI Source Address---Identifies the single station that sent the frame. As with Ethernet and Token Ring addresses, FDDI CDDI source addresses are 6 bytes long. Data---Contains either information destined for an upper- FAST layer protocol or control information. ETHERNET Frame Check Sequence (FCS)---Filed by the source station with a calculated cyclic redundancy check value dependent on frame GIGABIT contents (as with Token Ring and Ethernet). The ETHERNET destination address recalculates the value to determine whether the frame was damaged in transit. If so, the frame 100VG- is discarded. ANYLAN End Delimiter---Contains unique symbols, which cannot be data symbols, that indicate the end of the frame. HPPI Frame Status---Allows the source station to determine whether an error occurred and whether the frame was recognized and copied by a receiving station. FIBRE CHANNEL
  15. 15. Pengkodean FDDI FDDI ©©© tidak lagi menggunakan Manchester Encoding tetapi CDDI menggunakan 4B/5B/NRZI, yakni 4 bit data dikodekan dengan 5 bit kode pensinyalan yang kemudian ditandai FAST dengan Nonreturn to Zero Inverted (NRZI).[STAL00] ETHERNET Pengkodean ini dimaksudkan agar tercapai sinkronisasi dan GIGABIT ETHERNET diperolehnya pola pengkodean yang unik [TANE97]. Pergeseran timing transmitter dan receiver yang 100VG- ANYLAN menyebabkan keduanya tidak sinkron lagi dapat terjadi karena sinyal berpropagasi dengan transisi (+Volt ke 0 Volt ) HPPI yang terbatas, misal selalu +Volt dalam waktu yang panjang. Oleh sebab itu diperlukan lebih banyak transisi sinyal FIBRE (melalui pengkodean) untuk menjaga agar transmitter dan CHANNEL receiver tidak kehilangan momen sinkronnya.
  16. 16. 2. COPPER DISTRIBUTED DATA INTERFACE (CDDI) FDDI Copper Distributed Data Interface (CDDI) is the CDDI implementation of FDDI protocols over twisted-pair copper wire. Like FDDI, CDDI provides data rates of 100 Mbps and FAST uses a dual-ring architecture to provide redundancy. CDDI ETHERNET supports distances of about 100 meters from desktop to concentrator. GIGABIT ETHERNET CDDI is defined by the ANSI X3T9.5 Committee. The CDDI 100VG- ANYLAN standard is officially named the Twisted-Pair Physical Medium Dependent (TP-PMD) standard. It is also referred to HPPI as the Twisted-Pair Distributed Data Interface (TP-DDI), consistent with the term Fiber-Distributed Data Interface FIBRE (FDDI). CDDI is consistent with the physical and media- CHANNEL access control layers defined by the ANSI standard.
  17. 17. 2. COPPER DISTRIBUTED DATA INTERFACE (CDDI) FDDI The ANSI standard recognizes only two types of cables for CDDI: shielded twisted pair (STP) and unshielded twisted CDDI pair (UTP). STP cabling has a 150-ohm impedance and adheres to EIA/TIA 568 (IBM Type 1) specifications. UTP is FAST data-grade cabling (Category 5) consisting of four ETHERNET unshielded pairs using tight-pair twists and specially developed insulating polymers in plastic jackets adhering to GIGABIT ETHERNET EIA/TIA 568B specifications. 100VG- ANYLAN HPPI FIBRE CHANNEL
  18. 18. PengkodeanCDDI FDDI ©©© Digunakan MLT-3, yakni CDDI • bila bit 0 : tidak ada perubahan pensinyalan, • bila bit 1 : ada perubahan transisi : • bila pensinyalan terakhir adalah nonzero +V FAST ETHERNET atau nonzero –V, maka berikutnya adalah 0 Volt; • bila pensinyalan terakhir adalah 0 Volt, maka GIGABIT ETHERNET berikutnya adalah • nonzero +V bila nonzero bit sebelumnya 100VG- adalah –V, ANYLAN • nonzero –V bila nonzero bit sebelumnya adalah +V [STAL00]. HPPI Efek MLT-3 adalah terkonsentrasikannya sebagian besar energi sinyal pada frekuensi < 30 MHz sehingga mengurangi emisi radiasi yang berikutnya FIBRE CHANNEL dapat memperkecil interferensi.
  19. 19. FDDI 3. FAST ETHERNET LAN berkapasitas 10 Mbps banyak memerlukan perangkat pendukung seperti repeater, bridge, CDDI router untuk memperoleh transfer rate yang tinggi. FAST Komite IEEE 802.3 menyempurnakannya dengan ETHERNET meningkatkan kapasitas dengan cara mempertahankan format paket, antarmuka, GIGABIT deteksi kesalahan, dan prosedur yang lama tetapi ETHERNET dengan mengurangi waktu bit dari 100 ns menjadi 10 ns. 100VG- ANYLAN Standarnya disebut IEEE 802.3c yang tidak HPPI memperbolehkan pemakaian hub, tap vampire, maupun BNC [TANE97]. FIBRE CHANNEL
  20. 20. FDDI Kabel yang digunakan fast ethernet  UTP sebanyak 4 buah kapasitas 25MHz(kategori 3) dengan mekanisme seperti gambar yang CDDI kemudian disebut 100BaseT4,  UTP sebanyak 2 buah kapasitas 125 MHz FAST (kategori 5) dengan mekanisme fullduplex ETHERNET yang kemudian disebut 100BaseTX, dan menggunakan pengkodean 4B/5B, GIGABIT  Fiber optic sebanyak 2 strand dengan mekanisme ETHERNET fullduplex yang kemudian disebut 100BaseFX 100VG- ANYLAN HPPI FIBRE CHANNEL
  21. 21. 100BaseT Physical Layer FDDI ©©© CDDI FAST ETHERNET GIGABIT ETHERNET Characteristics of 100BaseT Media Types Characteristics 100BaseTX 100BaseFX 100BaseT4 Cable Category 5 UTP, or 62.5/125 micron multi- Category 3, 4, or 100VG- Type 1 and 2 mode fiber 5 UTP ANYLAN STP Number of pairs or 2 pairs 2 strands 4 pairs strands HPPI Connector ISO 8877 (RJ-45) Duplex SCmedia- ISO 8877 (RJ-45) connector interface connector connector (MIC) ST Maximum segment 100 meters 400 meters 100 meters length FIBRE Maximum network 200 meters 400 meters 200 meters CHANNEL diameter
  22. 22. FDDI 4. GIGABIT ETHERNET Gigabit Ethernet is an extension of the CDDI IEEE 802.3 Ethernet standard. Gigabit Ethernet builds on the Ethernet protocol but increases speed tenfold over Fast FAST ETHERNET Ethernet, to 1000 Mbps, or 1 Gbps. GIGABIT ETHERNET This MAC and PHY standard promises to be a dominant player in high-speed LAN 100VG- backbones and server connectivity. Because ANYLAN Gigabit Ethernet significantly leverages HPPI on Ethernet, network managers will be able to leverage their existing knowledge base to manage and maintain Gigabit Ethernet FIBRE CHANNEL networks.
  23. 23. GIGABIT ETHERNET PROTOCOL ARCHITECTURE FDDI To accelerate speeds from 100-Mbps Fast CDDI Ethernet to 1 Gbps, several changes need to be made to the physical interface. FAST ETHERNET It has been decided that Gigabit Ethernet will look identical to Ethernet from the GIGABIT ETHERNET data link layer upward. The challenges involved in accelerating to 1 Gbps have 100VG- been resolved by merging two technologies: ANYLAN IEEE 802.3 Ethernet and HPPI ANSI X3T11 Fibre Channel. FIBRE CHANNEL
  24. 24. GIGABIT ETHERNET PROTOCOL ARCHITECTURE FDDI Figure shows how key components from each CDDI technology have been leveraged to form Gigabit Ethernet. FAST ETHERNET GIGABIT ETHERNET 100VG- ANYLAN HPPI FIBRE CHANNEL
  25. 25. GIGABIT ETHERNET PROTOCOL ARCHITECTURE FDDI ©©© Leveraging these two technologies CDDI means that the standard can take advantage of the existing high- FAST ETHERNET speed physical interface technology of Fibre Channel while maintaining GIGABIT ETHERNET the IEEE 802.3 Ethernet frame 100VG- format, backward compatibility for ANYLAN installed media, and use of full-or HPPI half-duplex (via CSMA/CD). FIBRE CHANNEL Acknowledgement to Cisco Documentation developers, Merilee Ford et.al.
  26. 26. FDDI 5. 100VG-AnyLAN is an IEEE specification for 100-Mbps Token Ring and Ethernet implementations CDDI over 4-pair UTP. The MAC layer is not compatible with the IEEE 802.3 MAC layer. 100VG-AnyLAN was developed by Hewlett- FAST ETHERNET Packard (HP) to support newer time- sensitive applications, such as multimedia. A version of HP's GIGABIT implementation is standardized in the IEEE ETHERNET 802.12 specification. The access method is based on station 100VG- ANYLAN demand and was designed as an upgrade path from Ethernet and 16-Mbps Token Ring. HPPI Kabel yang Digunakan : •4-pair Category 3 UTP •2-pair Category 4 or 5 UTP •STP FIBRE •Fiber optic CHANNEL
  27. 27. FDDI 5. 100VG-AnyLAN The IEEE 802.12 100VG-AnyLAN standard specifies the link-distance limitations, CDDI hub-configuration limitations, and maximum network-distance limitations. Link FAST distances from node to hub are 100 meters ETHERNET (Category 3 UTP) or 150 meters (Category 5 UTP). GIGABIT ETHERNET 100VG- ANYLAN HPPI FIBRE CHANNEL
  28. 28. FDDI Konfigurasi Hub 100VG-Any LAN hubs are arranged in a hierarchical fashion. Each hub has at least one CDDI uplink port, and every other port can be a downlink port. Hubs can be cascaded three-deep if uplinked to other hubs, and cascaded hubs can FAST ETHERNET be 100 meters apart (Category 3 UTP) or 150 meters apart (Category 5 UTP). GIGABIT ETHERNET 100VG- ANYLAN HPPI FIBRE CHANNEL
  29. 29. FDDI Jarak Maksimum Antarstasiun End-to-end network-distance limitations are 600 meters (Category 3 UTP) or 900 meters (Category CDDI 5 UTP). If hubs are located in the same wiring closet, end-to-end distances shrink to 200 meters (Category 3 UTP) and 300 meters (Category FAST ETHERNET 5 UTP). GIGABIT ETHERNET 100VG- ANYLAN HPPI FIBRE CHANNEL
  30. 30. FDDI Mekanisme Transmisi 100VG-AnyLAN uses a demand-priority access CDDI method that eliminates collisions and can be more heavily loaded than 100BaseT. The demand-priority access method is more FAST ETHERNET deterministic than CSMA/CD because the hub controls access to the network. GIGABIT ETHERNET The 100VG-AnyLAN standard calls for a level-one hub, or repeater, that acts as 100VG- ANYLAN the root. This root repeater controls the operation of the priority domain. Hubs can HPPI be cascaded three-deep in a star topology. Interconnected hubs act as a single large repeater, with the root repeater polling FIBRE CHANNEL each port in port order.
  31. 31. FDDI Mekanisme Transmisi ©©© In general, under 100VG-AnyLAN demand-priority operation, a node wanting to transmit signals CDDI its request to the hub (or switch). If the network is idle, the hub immediately FAST acknowledges the request and the node begins ETHERNET transmitting a packet to the hub. GIGABIT If more than one request is received at the same ETHERNET time, the hub uses a round-robin technique to acknowledge each request in turn. High-priority 100VG- ANYLAN requests, such as time-sensitive videoconferencing applications, are serviced ahead of normal-priority requests. HPPI To ensure fairness to all stations, a hub does not grant priority access to a port more than FIBRE twice in a row. CHANNEL
  32. 32. 6. HIGH PERFORMANCE PARALLEL INTERFACE FDDI (HIPPI) Jaringan ini muncul karena adanya CDDI kebutuhan transmisi data dalam jumlah besar di Lab perancangan FAST ETHERNET senjata nuklir Los Alamos AS. Guna mengamati gerak jatuhnya bom GIGABIT ETHERNET diperlukan frame berukuran 1024 x 100VG- 1024 pixel (pixel = 24 bit) dengan ANYLAN kecepatan penayangan 30 frame / HPPI detik, sehingga diperlukan transfer rate sekitar 750 Mbps. FIBRE CHANNEL
  33. 33. 6. HIGH PERFORMANCE PARALLEL INTERFACE FDDI (HIPPI) Pada awalnya HIPPI dirancang CDDI sebagai saluran data point to point dengan bentuk master – slave yang FAST menggunakan kabel dedicated tanpa ETHERNET switching. Kapasitas yang disediakan 800 Mbps dan 1600 Mbps. GIGABIT ETHERNET Pada kapasitas 800 Mbps digunakan 100VG- ANYLAN 50 kabel twisted pair untuk menyalurkan 50 bit (32 bit data + HPPI 18 bit kontrol). Setiap 40 nanodetik sebuah word dipindahkan FIBRE ke saluran secara simplex dengan CHANNEL panjang tak lebih dari 25 m.
  34. 34. 6. HIGH PERFORMANCE PARALLEL INTERFACE FDDI (HIPPI) Dalam perkembangannya guna menghubungkan CDDI beberapa superkomputer (sebagai host) dan peripheral lain, maka dibentuk jaringan dengan crossbar switch berukuran 4x 4. FAST ETHERNET Setelah melalui masa yang berat akhirnya komite ANSI X3T9.3 menghasilkan standar GIGABIT ETHERNET HIPPI yang mencakup phisical layer dan data link layer, sedangkan layer di 100VG- atasnya tergantung pada pengguna. ANYLAN Protokol dasarnya adalah : host harus HPPI meminta crossbar switch untuk membentuk koneksi, kemudian host mengirim pesan bagi pembebasan koneksi tersebut agar dapat FIBRE CHANNEL dilakukan komunikasi.
  35. 35. 6. HIGH PERFORMANCE PARALLEL INTERFACE FDDI (HIPPI) ©©© CDDI Frame HIPPI berukuran 256 word yang berisi 1016 byte header dan kapasitas payload FAST hingga 232 – 2 byte data. ETHERNET Deteksi kesalahan menggunakan VRC dan LRC GIGABIT ETHERNET [TANE97]. 100VG- ANYLAN HPPI FIBRE CHANNEL
  36. 36. FDDI 7. FIBRE CHANNEL Perkembangan aplikasi guna pelayanan CDDI informasi yang berbasis grafis, video, multimedia lainnya membutuhkan saluran yang berkecepatan semakin tinggi. FAST ETHERNET Saluran ini menangani baik saluran data GIGABIT ETHERNET termasuk HIPPI, SCSI, dan multiplexor mainframe IBM, serta koneksi jaringan 100VG- termasuk IEEE 802, IP, dan ATM. ANYLAN HPPI FIBRE CHANNEL
  37. 37. FDDI 7. FIBRE CHANNEL Standar yang digunakan ANI X3T11. Struktur CDDI protokol pada saluran serat terlihat pada tabel berikut ini. FAST ETHERNET LAYER SALURAN DATA JARINGAN GIGABIT Data FC-4 HIPPI SCSI IBM 802 IP ATM ETHERNET link FC-3 Layanan Umum (aturan multicast) Layer FC-2 Protokol Pembuat Frame 100VG- ANYLAN Phisic FC-1 8/10 encode/decode al FC-0 100 200 400 800 Future Layer Mbps Mbps Mbps Mbps HPPI Sumber : Tanenbaum, 1997 FIBRE CHANNEL
  38. 38. FDDI 7. FIBRE CHANNEL Struktur dasarnya adalah sistem ujung yang CDDI disebut stasiun dan jaringan yang terbentuk oleh elemen-elemen switch yang disebut fabric. FAST ETHERNET Setiap stasiun mencakup satu terminal atau GIGABIT ETHERNET lebih yang disebut N-port, sedangkan elemen fabric-switch mencakup terminal- 100VG- terminal multipel yang disebut F-port. ANYLAN HPPI FIBRE CHANNEL
  39. 39. FDDI 7. FIBRE CHANNEL Sistem seperti ini sangat fleksibel dalam penambahan atau pengurangan stasiun. Karena CDDI didasarkan pada jaringan switching, maka penambahan N-port, rate data, dan jarak FAST jangkauan lebih mudah dilakukan. ETHERNET Demikian pula penambahan media transmisi baru dapat dilakukan dengan menambah F-port dan GIGABIT switch baru ke fabric. [STAL00]. ETHERNET TIPE MEDIA KAPASITAS 800 Mbps 400 Mbps 200 Mbps 100 Mbps 100VG- ANYLAN Serat mode tunggal 10 km 10 km 10 km - Serat multimode 50 µm 0,5 km 1 km 2 km - Serat multimode 62,5 µm 175 m 1 km 1 km - HPPI Kabel koaksial video 50 m 71 m 100 m 100 m Kabel koaksial mini 14 m 19 m 28 m 42 m Shielded Twisted Pair 28 m 46 m 57 m 80 m FIBRE CHANNEL Sumber : Stallings, 2000 ***