Cellular Respiration CR Chapter 8 And 9 version 2.0

2,876 views

Published on

Energy of Reactions, Cellular Respiration (Gylcolysis, Krebs Cycle, based on Campbell & Reece Biology Chapters 8 & 9

Oxidative Phosphorylation slides added (earlier ones corrected), and Fermentation slides also

Published in: Education, Technology
1 Comment
0 Likes
Statistics
Notes
  • Well.. Is not as boring as I thought it’d be
    P.S. Slide 22 is a special surprise :D
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Views
Total views
2,876
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
118
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide

Cellular Respiration CR Chapter 8 And 9 version 2.0

  1. 1. Cellular Respiration ! Welcome to your first boring powerpoint… Jeff Jewett American College of Sofia, Sofia Bulgaria Version 2.0, posted 6 December 2009
  2. 2. Fig 8.5 Energy, Spontaneous Change, Work Capacity
  3. 3. ATP Figures 8.8 & 8.9 Campbell & Reece
  4. 4. Fig 8.10
  5. 5. The Big Idea <ul><li>“with the help of enzymes, a cell systematically degrades complex organic molecules that are rich in potential energy to simpler waste products that have less energy. Some of the energy taken out of chemical storage can be used to do work; the rest is dissipated as heat.” P163 CR </li></ul>
  6. 6. Types of Respiration <ul><li>Aerobic Respiration (with oxygen) </li></ul><ul><ul><li>Usually just call “respiration” </li></ul></ul><ul><ul><li>C 6 H 12 O 6 + O 2  6H 2 O + 6CO 2 + energy </li></ul></ul><ul><li>Energy is captured as 36-38 (ADP + P)  36-38 ATP </li></ul><ul><li>Anaerobic Respiration / Fermentation (without Oxygen) </li></ul>
  7. 7. Fig 9.2 <ul><li>Energy flows (in from sun, out as heat) </li></ul><ul><li>Matter/nutrients cycle </li></ul>
  8. 8. ReDox Reaction <ul><li>Ox idation & Re duction </li></ul><ul><li>A reaction where an electron (or a partial charge) is transferred from one compound to another </li></ul><ul><li>Reduction – gains electrons (and energy) </li></ul><ul><li>Oxidation – loses electrons (and energy) </li></ul><ul><li>Oxidizing Agent = gets reduced </li></ul><ul><li>Reducing Agent = gets oxidized </li></ul><ul><ul><li>(I know, that’s confusing…) </li></ul></ul>
  9. 9. <ul><li>H 2 + O 2  H 2 0 + energy (fuels space shuttle, “fuel cells”) </li></ul><ul><li>Electrons equally shared on H-H bond (non-polar), but mostly on O in H-O bond (polar) </li></ul><ul><li>Means H “lost” most of an electron, and lost energy </li></ul><ul><li>H was oxidized, O was reduced </li></ul>Partial Charge ReDox
  10. 10. <ul><li>The more electronegative the atom, the more energy it requires to pull an electron away from it. </li></ul><ul><li>An electron loses potential energy when it moves from a less e-neg atom to a more electronegative atom. </li></ul><ul><li>Stairstep photo, Fig 9.5b </li></ul>
  11. 11. Electron Carriers <ul><li>Explosions inside body = bad  </li></ul><ul><li>Gradual release of energy = good  </li></ul><ul><li>Nicotinamide Adenine Dinucleotide (NAD + ) </li></ul><ul><li>NAD+  NADH </li></ul><ul><li>FAD  FADH2 </li></ul><ul><li>Dehydrogenase reaction on p 164 </li></ul>
  12. 12. Fig 9.4
  13. 13. Fig 9.6 Overview of cellular Respiration
  14. 14. Fig 9.8 Glycolysis <ul><li>The breaking of sugar  pyruvate </li></ul><ul><li>In the cytoplasm </li></ul><ul><li>Does not require O2 </li></ul><ul><li>Net gain of 2 ATP </li></ul>
  15. 15. <ul><li>COO - groups are low in energy (compared to H-C-OH in sugars), are fully oxidized </li></ul>
  16. 16. Krebs Cycle (Citric Acid Cycle) <ul><li>Glycolysis releases less than ¼ of energy in glucose (most of the rest is in pyruvate) </li></ul><ul><li>O 2 is required to extract the rest of energy </li></ul><ul><li>Pyruvate moves into mitochondria (active transport) for Krebs Cycle </li></ul><ul><li>1. Pyruvate  to acetyl-CoEnzymeA </li></ul><ul><ul><li>This is first decarboxylation step (CO 2 removed) </li></ul></ul><ul><ul><li>Oxidize the 2C remaining to form Acetate/Acetic Acid </li></ul></ul><ul><ul><li>Store energy by reducing NAD+  NADH </li></ul></ul><ul><ul><li>Acetate joins to CoEnzyme A (from B Vitamin </li></ul></ul><ul><ul><li>Acetyl-CoA has high potential energy / very reactive </li></ul></ul>
  17. 17. Krebs Cycle (summary) <ul><li>A “metabolic furnace” oxidizing organic fuel (pyruvate), releasing CO2 </li></ul>
  18. 18. A closer look – Krebs Cycle <ul><li>Pay attention to “start” of cycle (where pyruvate enters) </li></ul><ul><li>Decarboxylation </li></ul><ul><li>Energetic compounds: 4 NADH, 1 FADH 2 , 1 ATP </li></ul><ul><li>Waste compound: 3 CO2 </li></ul><ul><li>Regeneration of oxaloacetate (cycle) </li></ul>
  19. 19. The Citric Acid Cycle (“Krebs” Cycle / TCA Cycle) <ul><li>In Mitochondria </li></ul><ul><li>Decarboxylation (pyruvate  CO2) </li></ul><ul><li>1 ATP is produced </li></ul><ul><li>Most energy of pyruvate is stored in Electron Carriers (NAD + /FAD) which were reduced </li></ul><ul><li>FAD (oxidized)  FADH 2 (reduced) </li></ul><ul><li>4 NAD + oxidized  4 NADH (reduced) </li></ul><ul><li>This step does not require O 2 , but will not occur unless O 2 available for next step </li></ul>
  20. 20. After Glycolyis & Krebs… <ul><li>All carbon from sugar converted to CO 2 (exhaled) </li></ul><ul><li>4 ATP produced so far </li></ul><ul><ul><li>2 from glycolysis, 2 from Krebs (2 pyruvates) </li></ul></ul><ul><ul><li>Most energy stored in electron carriers </li></ul></ul><ul><ul><li>Time to “cash ‘em in” (take NADH/FADH 2 to “battery exchange”) </li></ul></ul><ul><ul><li>We need OXYGEN! </li></ul></ul>
  21. 21. <ul><li>Glycolysis occurs in cytoplasm </li></ul><ul><li>Krebs Cycle occurs in mitochondria ( MATRIX ) </li></ul><ul><li>Oxidative Phosphorylation occurs in mitochondria (on and across inner membrane) </li></ul>Folds of inner membrane known as “cristae”
  22. 22. Oxidative Phosphorylation: Electron Transport Chain (ETC) and Chemiosmosis Intermembrane Space (“outside”) Mitochondrial Matrix (“inside”) Corrected Slide!
  23. 23. Electron Transport Chain: g r a d u a l release of energy as e - travel from food to oxygen <ul><li>Electron Carriers (NADH, FADH 2 ) donate 2 e - to series of molecules embedded in inner mitochondrial membrane </li></ul><ul><li>NADH, FADH 2 are oxidized to NAD + and FAD </li></ul><ul><li>“ bucket brigade” passing e - down ETC, reducing each “downhill” molecule </li></ul><ul><li>Final electron acceptor is oxygen (O 2 ) (very electronegative) </li></ul><ul><li>O 2 + 2e - + 2H + (protons from solution)  H 2 0 </li></ul>
  24. 24. Moving electrons = electricity <ul><li>Electrons traveling down ETC made to do work </li></ul><ul><li>Use flow of e- from NADH/FADH2 to pump H + out of mitochondrial matrix (to “intermembrane space” </li></ul><ul><li>H + conc. matrix: low , </li></ul><ul><li>H + conc. in intermembrane space: high </li></ul>
  25. 25. Chemiosmosis (1978 Nobel Prize): use H + gradient to do cellular work <ul><li>Charge/pH difference across membrane creates potential energy </li></ul><ul><li>Flow of H + across membrane used to power ATP Synthase </li></ul><ul><li>ATP Synthase phosphorylates ADP  ATP (endergonic reaction) </li></ul><ul><li>1 FADH 2 used to create ~2 ATP </li></ul><ul><li>1 NADH used to create ~3 ATP </li></ul>
  26. 26. Chemiosmosis <ul><li>“Energy-coupling mechanism that uses energy stored in the form of an H+ gradient across a membrane to drive cellular work.” (CR p176) </li></ul><ul><li>H+ gradient  “proton-motive force” </li></ul>
  27. 27. ATP Synthase <ul><li>Like a hydropower turbine </li></ul><ul><li>It spins! </li></ul><ul><li>Smallest rotary motor in nature </li></ul><ul><li>ATP Synthase provides the only place H + can diffuse back into matrix </li></ul><ul><li>Read p175 (good summary) </li></ul>
  28. 28. Movies! <ul><li>Campbell Reece Animation #1 </li></ul><ul><li>“ Californication ” remix </li></ul><ul><li>ATP Synthase Animation </li></ul>
  29. 29. 3 steps of respiration (with Oxygen) <ul><li>Glycolyis : sugar split in two, 2 pyruvates produced, 2 ATP and 2 NADH </li></ul><ul><li>Krebs : 2 pyruvates oxidized into CO 2. 2 ATP, 6 CO 2 , 8NADH, 2FADH 2 produced in mito matrix. </li></ul><ul><li>Oxidative Phosphorylation: NADH/FADH 2 transfer energy (electrons) to ETC, which gradually releases energy from food to oxygen. </li></ul><ul><ul><li>Energy is used to pump protons (H + ) out of matrix, creating proton gradient (proton-motive force). </li></ul></ul><ul><ul><li>Proton-motive force used to power ATP synthesis (chemiosmosis) as H + diffuse back into matrix. </li></ul></ul>
  30. 30. Counting ATP (more fun than counting sheep…) <ul><li>2 ATP from glycolysis, 2 ATP from Krebs </li></ul><ul><li>Each NADH powers production of ~3 ATP </li></ul><ul><li>Each FADH 2 powers production of ~2 ATP </li></ul><ul><li>10 NADH creates up to 30 ATP </li></ul><ul><li>2 FADH 2 creates up to 4 ATP </li></ul><ul><li>36-38 ATP total </li></ul><ul><li>~40% efficient (rest of energy lost as heat) </li></ul>
  31. 31. Got Oxygen??? (Nope…) <ul><li>Fermentation animation (textbook) </li></ul><ul><li>Without oxygen, NADH is waste, must re-generate NAD+ to keep glycolysis going </li></ul><ul><li>Fermentation = glycolysis + NAD+ regeneration </li></ul><ul><li>Alcholic Fermentation </li></ul><ul><li>Lactic Acid Fermentation </li></ul><ul><li>Only get ~5% of energy out of glucose (compared to aerobic respiration) </li></ul>
  32. 32. Alcoholic Fermentation <ul><li>Many bacteria, yeast </li></ul><ul><li>Pyruvate  CO 2 and Ethanol </li></ul><ul><ul><li>2 NADH  2NAD + </li></ul></ul>http://glasscooking.files.wordpress.com/2007/09/fermentation.jpg
  33. 33. Lactic Acid Fermentation <ul><li>Some fungi/bacteria  make yogurt/cheese </li></ul><ul><li>Human muscles </li></ul><ul><li>Pyruvate  lacate </li></ul><ul><li>2NADH  2NAD + </li></ul>
  34. 34. Energy Pathways Hours A few minutes 2-3 seconds of ATP + 6-8 seconds of CP Duration >1600m Aerobic <800m Glycolysis / lactate (anaerobic) <200m ATP / Creatine Phosphate (100g/120g) Running Distance Pathway

×