Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Digital Image Processing: Image Enhancement in the Frequency Domain

2,185 views

Published on

A course on Digital Image Processing based on Gonzalez book

Published in: Education
  • Be the first to comment

Digital Image Processing: Image Enhancement in the Frequency Domain

  1. 1. CSC447: Digital Image Processing Chapter 4: Prof. Dr. Mostafa Gadal-Haqq M. Mostafa Computer Science Department Faculty of Computer & Information Sciences AIN SHAMS UNIVERSITY
  2. 2. Foundation  Fourier Theorem: Any function that periodically repeat itself can be represented by the some of sines and/or cosines of different frequencies, each multiplied by a different coefficient. )cossin()( 0 xbxaxf ii n i ii    2CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  3. 3. The Discrete Fourier Transform (DFT)  1-D Fourier Transform:  The Fourier transform, F(u), of a discrete 1- D function, f(x); x = 0, 1, 2, …, M-1, is:  Where u= 0, 1, 2, …, M-1  1-D Inverse Fourier Transform:      1 0 /2 )( 1 )( M x Muxj exf M uF      1 0 /2 )()( M u Muxj euFxf  3CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  4. 4. The Discrete Fourier Transform (DFT)  F(u) is called the frequency component of the Fourier Transform, and its domain (the values of u) is called the frequency domain, because u determines the frequency of the components of the transform:  Since F(u) is complex quantity It is convenient to express it in polar form  |F(u)| is called the magnitude, and (u) is the phase  The Power Spectrum P(u) = |F(u)|2 )](/)([tan(u)and,)]()([|)(|where, |)(|)( 1-2/122 )( uRuIuIuRuF euFuF uj     4CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  5. 5. The Discrete Fourier Transform (DFT)  1-D Fourier Transform: 5CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  6. 6. The Discrete Fourier Transform (DFT)  2-D Fourier Transform:  The Fourier transform, F(u,v), of a discrete 2-D function (MxN), f(x,y) is:  Where u= 0,1,2, …,M-1, and v = 0,1,2, …, N-1  2-D Inverse Fourier Transform:        1 0 1 0 )//(2 ),( 1 ),( M x N y NvyMuxj eyxf MN vuF          1 0 1 0 )//(2 ),(),( M u N v NvyMuxj evuFyxf  6CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  7. 7. The Discrete Fourier Transform (DFT)  the Fourier spectrum , phase angle, andpower spectrum , are defined as before: ),(),(|),(| and)],,(/),([tanv)(u, ,)],(),([|),(|where, |),(|),( 222 1- 2/122 ),( vuIvuRvuFP(u,v) vuRvuI vuIvuRvuF evuFvuF vuj       7CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  8. 8. The Discrete Fourier Transform (DFT)  2-D Fourier Transform: 8CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  9. 9. The Discrete Fourier Transform (DFT)  2-D Fourier Transform: 9CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  10. 10. The Discrete Fourier Transform (DFT)  2-D Fourier Transform: 10CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  11. 11. The Discrete Fourier Transform (DFT)  2-D Fourier Transform: 11CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  12. 12. The Discrete Fourier Transform (DFT)  Properties of the Fourier Transform: 12CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  13. 13. The Discrete Fourier Transform (DFT)  Properties of the Fourier Transform: 13CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  14. 14. The Discrete Fourier Transform (DFT)  Properties of the Fourier Transform: 14CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  15. 15. The Discrete Fourier Transform (DFT)  Properties of the Fourier Transform: 15CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  16. 16. The Discrete Fourier Transform (DFT)  Properties of the Fourier Transform: 16CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  17. 17. Filtering in the Frequency Domain  Basic Operations 17CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  18. 18. Filtering in the Frequency Domain  2-D Fourier Transform 18CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  19. 19. Filtering in the Frequency Domain  2-D Fourier Transform: 19CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  20. 20. Filtering in the Frequency Domain  Notch filter 20CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  21. 21. Filtering in the Frequency Domain  Ideal Low-pass Filter (ILPF) cutoff frequency 21CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  22. 22. Filtering in the Frequency Domain  How to find the cutoff frequency for a ILPF?  Find the circle that enclose a certain amount of the power spectrum of the image:  Where P(u,v) is the Power spectrum at frequencies (u,v) the. Then , a circle of radius r enclose a  percentage of the power, where 22CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  23. 23. Filtering in the Frequency Domain  Distribution of the power spectrum: 23CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  24. 24. Filtering in the Frequency Domain  Filtering with power cutoff 24CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  25. 25. Filtering in the Frequency Domain  Butterworth Low-pass Filter 25CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  26. 26. Filtering in the Frequency Domain  Butterworth Low-pass Filter 26CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  27. 27. Filtering in the Frequency Domain  Gaussian Low-pass Filter  Where D(u,v) id the distance from the origin 27CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  28. 28. Filtering in the Frequency Domain  Gaussian Low-pass Filter 28CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  29. 29. Filtering in the Frequency Domain  Gaussian Low-pass and High-pass filters: 29CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  30. 30. Filtering in the Frequency Domain  Gaussian Low-pass filters: 30CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  31. 31. Filtering in the Frequency Domain  Gaussian Low-pass filters: 31CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  32. 32. Filtering in the Frequency Domain  Ideal High-pass filters: 32CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  33. 33. Filtering in the Frequency Domain  Ideal High-pass filters: 33CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  34. 34. Filtering in the Frequency Domain  Ideal High-pass filters: 34CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  35. 35. Filtering in the Frequency Domain  Gaussian High-pass filters: 35CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  36. 36. Filtering in the Frequency Domain  High-pass filters: 36CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  37. 37. Filtering in the Frequency Domain  High-pass filters: 37CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  38. 38. Filtering in the Frequency Domain  Ideal Band-Pass Filter 38CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  39. 39. Filtering in the Frequency Domain  The Laplacian filters: 39CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  40. 40. Filtering in the Frequency Domain  Gaussian High-pass filters: 40CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  41. 41. Filtering in the Frequency Domain  Homomorphic filters: 41CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  42. 42. Filtering in the Frequency Domain  Homomorphic filters: 42CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  43. 43. Filtering in the Frequency Domain  Homomorphic filters: 43CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.
  44. 44. HW3  4.9 and 4.12 44CSC447: Digital Image Processing Prof. Dr. Mostafa GadalHaqq.

×