Advertisement
Advertisement

More Related Content

Slideshows for you(20)

Similar to Data Visualization And Annotation Workshop at Biocuration 2015(20)

Advertisement

More from Monica Munoz-Torres(20)

Recently uploaded(20)

Advertisement

Data Visualization And Annotation Workshop at Biocuration 2015

  1. Data  Visualiza+on  &  Annota+on   8th  Interna+onal  Biocura+on  Conference   24  April  2015  |  Beijing,  China     Rama  Balakrishnan   Saccharomyces  Genome  Database   Gene  Ontology  Consor5um   Stanford  University,  CA,  USA   Image  by  Mar5n  Krzywinski.  Lim  et  al.  Genome  Biol  (2015)  16:18   Monica  Munoz-­‐Torres   Berkeley  Bioinforma5cs  Open-­‐Source  Projects   Lawrence  Berkeley  Na5onal  Lab,  CA,  USA  
  2. Outline   1.  Introduc5on   – Goals   – Examples  of  genome  visualiza5on  tools   2.  Panelists   – Lorna  Richardson:     eMouseAtlas  and  Image  Informa5cs   – Justyna  Szostak:   Curated  Causal  Biological  Network  Models     3.  Discussion   – Featuring  you!   2   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   2  
  3. 3   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   Goals  of  the  workshop   1.  To  learn  about  tools  available  for  human  interpreta5on  of   genomic  data,  specifically  in  the  context  of  annota5on.     2.  To  open  a  space  for  discussion:  genomic  data  are  ever  more   abundant  and  heterogeneous,  with  widely  varied  sources,   produc5on  techniques,  and  intrinsic  experimental  error.   –  How  do  we  analyze  these  data?   –  What  is  the  best  way  to  interpret  the  stories  the  data  are  telling  us?   –  How  to  put  these  together  (overlay)  visually?   –  Developers:  what  is  the  best  way  to  disseminate  and  contribute  code  to   make  tool  development  easier?  
  4. Then  and  Now   Figures        49   Tables        27   References  452     4   Figures    1   Tables    0   References  6     4  
  5. Genomic  Data:     Heterogeneous  &  Abundant   •  Structural:  gene  models,  transcriptomes,   RNAseq,  differen5al  expression,  etc.   •  Func5onal:  gene  ontology,  interac5ons,   phenotypes,  SNPs,  complexes,  protein   abundance,  diseases,  images,  etc.   •  Some  examples  .  .  .     5   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   5  
  6. Genomic  differences   6  
  7. Gene  structure,  ideograms,  maps   7  
  8. Most  of  the  curated  data  is  text   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   8  
  9. Visualizing  interac5on  data   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   9  
  10. Overlaying  curated  data   hgp://string-­‐db.org  
  11. Complexes,  interac5ons,  and  more   Complex  SGD_GO:0005955   calcineurin  complex  subunits     Interac5ons   hgp://3drepertoire.russelllab.org/   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   11  
  12. Phenotypes  and  diseases   hgp://monarchini5a5ve.org/   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   12  
  13. Sequence  varia5ons   Sequence  varia5on  in     various  strains  of     S.  cerevisiae   13  
  14. Molecular  Model   Edi5ng  Environment   Noctua  –  prototype  from  GOC     -­‐  Each  node  (box)  is  a  func5on  or   process.     -­‐  Other  nodes  are  folded  in  as  OWL   expressions.   -­‐  Users  may  add  and  drag  elements   -­‐  Supports  real  5me  collabora5on   14  
  15. Understanding  the  Data   Much  of  the  interpreta+on  requires  human   judgment.  Visualiza+on  improves  our   understanding  and  increases  our  chances  of   extrac+ng  meaningful  conclusions.   15   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   15  
  16. Cancer   miRNome   revealed  survival   differences  in   diffuse  large  B-­‐ cell  lymphoma   pa5ents   16   Lim  et  al.  Genome  Biol   16:18  (2015)    
  17. Circos   17   ENCODE   Circular  Genome  Data   Visualiza+on   -­‐  Human  placenta   transcriptome   -­‐  Pancrea5c  expression  db   -­‐  Wall-­‐sized  High-­‐res  display   for  compara5ve  analys.  of  CNV   -­‐  Chromosomal  transloca5ons   -­‐  Variant  iden5fica5on  in   mul5ple  sclerosis   -­‐  Sorghum  seedling   development  under  Low  Temp   condi5ons   -­‐  Etc.,  etc.,  etc…    
  18. 18  
  19. Visualizing  sequencing  data   19   Nielsen  et  al.  Nature  Met  Suppl  7:  3s.  (2010)     Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference  
  20. Genome  Browsers   20   Nielsen  et  al.  Nature  Met  Suppl  7:  3s.  (2010)     Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference  
  21. Compara5ve  Genomics  Visualiza5on   21   Nielsen  et  al.  Nature  Met  Suppl  7:  3s.  (2010)     Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference  
  22. Communica5ng  Complex  Data   Focus  on  meaning  instead  of  structure—anchor  the  figure  to   relevant  biology  rather  than  to  methodological  details.   1)  What  are  the  interes5ng  findings,  and  what  representa5on   would  communicate  them  clearly?       22   2)  Forgo  conven5onal   approaches  to  displaying   mul5dimensional  data.   Beger  to  project  the  data   onto  familiar  visual   paradigms,  such  as  a   protein  network  or   pathway,  to  saliently  show   biological  effects  in  a   func5onal  context.   Krzywinski  and  Savig.     Nature  Methods  10:7,  595  (2013)  
  23. Storytelling   •  Relate  your  data  using  the  age-­‐old  custom  of   telling  a  story.   – Stories  have  the  capacity  to  delight  and  surprise   and  to  spark  crea5vity  by  making  meaningful   connec5ons  between  data  and  the  ideas,  interests   and  lives  of  your  readers.   23   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   23  
  24. Open-­‐source:     dissemina5on  &  contribu5ons   •  Gene5c  &  genomic  informa5on  is  more  valuable   when  shared   •  Promote  and  encourage  Open  Science:  transparency,   reproducibility,  data  provenance.  E.g.  Open   Bioinforma5cs  Founda5on  hgp://open-­‐bio.org     •  Public  repositories  make  solware  easily  accessible   and  allow  collabora5ve  efforts,  e.g.  GitHub   24   hgps://github.com/  
  25. 25   Biocura5on  2015   Data  Visualiza5on  &  Annota5on   8th  Interna5onal   Biocura5on  Conference   Our  Panelists   1.  Lorna  Richardson:     eMouseAtlas  and  Image  Informa5cs     2.  Justyna  Szostak:   Curated  Causal  Biological  Network  Models    
Advertisement