SlideShare una empresa de Scribd logo
TERMODINÁMICA. Juanita Velásquez Sánchez 9b
Que es? Rama de la física que estudia los efectos de los cambios de la temperatura, presión y volumen de los sistemas a un nivel macroscópico. También podemos decir que la termodinámica nace para explicar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo especificaremos que calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
Que son.. las Leyes de la termodinámica? Primera ley de la termodinámica También conocida como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. La ecuación general de la conservación de la energía es la siguiente: E entra −  E sale = Δ E sistema Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma: U  =  Q  −  W
Segunda ley de la termodinámica Esta ley regula la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, La Segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía tal que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero. Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico. Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.
Tercera ley de la termodinámica La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”. Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica. Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por la ciencias.
Que es la Ley Cero? El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x e y) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas térmicas y dinámicas del sistema. A este principio se le llama del equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico ya que aquí las fuerzas electroestáticas se contradicen. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición nula.
PRÁCTICA DE LABORATORIO vamos a tratar la  termodinámica,  que es la ciencia que se basa en el estudio de las propiedades microscópicas de los sistemas, intentando dar respuesta a las transformaciones que en ellos se producen, considerando las informaciones que se puedan obtener acerca del comportamiento microscópico de las partículas que los constituyen. Se la considera, por tanto, como el puente que relaciona ambas concepciones de la materia. Esta practica consistirá en hallar el calor específico de un cierto material. Materiales: pinzas, soportes, calorímetro, rejilla, 2 termómetros, 2 vasos precipitados, mechero, bola de cristal, báscula. Pasos a seguir para llevar a cabo la practica: Cogemos el vaso precipitado y lo llenamos de agua hasta conseguir mas o menos 100 mg de agua (aproximadamente), que luego medido en la báscula dará exactamente  101.1 Mg. de agua. Echamos el agua en el calorímetro y medimos la temperatura. Obtenemos que  el agua está a 25ºC. 25ºC M AGUA = 101.1mg T AGUA = 25ºC
C AGUA = 1cal/gr·ºC Después hemos echado una bola de cristal de M =19.7gr en otro vaso de precipitado que posteriormente hemos llenado de agua hasta cubrir la bola, para después calentarlo “al baño maría”.  90ºC M BOLA =19.7 gr / M BOLA + AGUA =120.8 T AGUA = 92ºC = T BOLA C =? En cuanto llega a aproximadamente 92ºC retiramos con cuidado para no quemarnos el vaso del mechero, le apagamos y acto seguido, sin esperar a que la temperatura de la bola descienda, atrapamos la bola con unas pinzas especiales e introducimos la bola dentro del calorímetro que previamente hemos abierto. Dejamos que repose y que la temperatura de la bola actúe sobre la del agua y segundos después observamos que la temperatura final a ascendido 2ºC, es decir, hasta 27ºC. 27ºC MEZCLA: AGUA + BOLA Entonces con los datos obtenidos procedemos a realizar las resoluciones necesarias para averiguar cual es el calor especifico de la bola de cristal. M AGUA · C AGUA · (T FINAL - T AGUA ) = -M BOLA · C BOLA · (T FINAL - T BOLA) 101.1· 1· (27-25) = -19.7 · C BOLA · (27-90) 202.2 = 1280.5· C BOLA
Conclusión: hemos demostrado que aun mezclando sustancias como el agua y una bola de cristal, esta ultima, no varía mucho la temperatura final, solo la aumenta 2 ºC, por lo que se cumple la fórmula de: Qg = -Qp C BOLA = 0.157 cal/ grºC Qg = -Qp

Más contenido relacionado

La actualidad más candente

Presentacion Termodinamica 5
Presentacion Termodinamica 5Presentacion Termodinamica 5
Presentacion Termodinamica 5
guestdfc67
 
La Termodinamica
La TermodinamicaLa Termodinamica
La Termodinamica
cruizgaray
 
Termodinámica
Termodinámica Termodinámica
Termodinámica
kevin19956
 

La actualidad más candente (19)

Termodinamica y energia
Termodinamica y energiaTermodinamica y energia
Termodinamica y energia
 
Termodinamica conceptos basicos
Termodinamica  conceptos basicos Termodinamica  conceptos basicos
Termodinamica conceptos basicos
 
Presentacion Termodinamica 5
Presentacion Termodinamica 5Presentacion Termodinamica 5
Presentacion Termodinamica 5
 
Termodinamica fisica B
Termodinamica fisica BTermodinamica fisica B
Termodinamica fisica B
 
termodinamica y sus aplicaciones a los seres vivos
termodinamica y sus aplicaciones a los seres vivostermodinamica y sus aplicaciones a los seres vivos
termodinamica y sus aplicaciones a los seres vivos
 
TermodináMica
TermodináMicaTermodináMica
TermodináMica
 
Primera Ley de La TermodináMica
Primera Ley de La TermodináMicaPrimera Ley de La TermodináMica
Primera Ley de La TermodináMica
 
Fisica TERMODINAMICA
Fisica TERMODINAMICAFisica TERMODINAMICA
Fisica TERMODINAMICA
 
La Termodinamica
La TermodinamicaLa Termodinamica
La Termodinamica
 
Termodinámica
TermodinámicaTermodinámica
Termodinámica
 
Diapositivas de Termodinámica
Diapositivas de TermodinámicaDiapositivas de Termodinámica
Diapositivas de Termodinámica
 
Fisica termodinamica
Fisica termodinamica Fisica termodinamica
Fisica termodinamica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Termodinamica
Termodinamica Termodinamica
Termodinamica
 
Termodinamica trabajo
Termodinamica trabajoTermodinamica trabajo
Termodinamica trabajo
 
Termodinámica
Termodinámica Termodinámica
Termodinámica
 
La termodinámica
La termodinámicaLa termodinámica
La termodinámica
 
Introduccion a la termodinamica
Introduccion a la termodinamicaIntroduccion a la termodinamica
Introduccion a la termodinamica
 
Primera ley de la termodinamica
Primera ley de la termodinamicaPrimera ley de la termodinamica
Primera ley de la termodinamica
 

Destacado

Ejercicios resueltos-de-energia-potencial-y-cinetica
Ejercicios resueltos-de-energia-potencial-y-cineticaEjercicios resueltos-de-energia-potencial-y-cinetica
Ejercicios resueltos-de-energia-potencial-y-cinetica
mariochico2
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
charliebm7512
 

Destacado (17)

Presentación1
Presentación1Presentación1
Presentación1
 
Física moderna
Física modernaFísica moderna
Física moderna
 
INTRODUCCIÓN A LA FÍSICA
INTRODUCCIÓN A LA FÍSICAINTRODUCCIÓN A LA FÍSICA
INTRODUCCIÓN A LA FÍSICA
 
Retículo endoplasmatico liso y rugoso
Retículo endoplasmatico liso y rugosoRetículo endoplasmatico liso y rugoso
Retículo endoplasmatico liso y rugoso
 
RETÍCULO ENDOPLASMATICO LISO (REL)
RETÍCULO ENDOPLASMATICO LISO (REL)RETÍCULO ENDOPLASMATICO LISO (REL)
RETÍCULO ENDOPLASMATICO LISO (REL)
 
ENTROPIA-ENTALPIA
ENTROPIA-ENTALPIAENTROPIA-ENTALPIA
ENTROPIA-ENTALPIA
 
División de la física.
División de la física.División de la física.
División de la física.
 
Física I Michel Valero
Física I Michel ValeroFísica I Michel Valero
Física I Michel Valero
 
Física Clasica
Física ClasicaFísica Clasica
Física Clasica
 
Retículo endoplasmático, Funciones, Estructura y Patologías Asociadas
Retículo endoplasmático, Funciones, Estructura y Patologías AsociadasRetículo endoplasmático, Funciones, Estructura y Patologías Asociadas
Retículo endoplasmático, Funciones, Estructura y Patologías Asociadas
 
Fisica y sus ramas
Fisica y sus ramasFisica y sus ramas
Fisica y sus ramas
 
Problemas de qumica termodinamica
Problemas de qumica termodinamicaProblemas de qumica termodinamica
Problemas de qumica termodinamica
 
Física clásica
Física clásica Física clásica
Física clásica
 
Mapa conceptual fisica
Mapa conceptual fisicaMapa conceptual fisica
Mapa conceptual fisica
 
Ejercicios resueltos-de-energia-potencial-y-cinetica
Ejercicios resueltos-de-energia-potencial-y-cineticaEjercicios resueltos-de-energia-potencial-y-cinetica
Ejercicios resueltos-de-energia-potencial-y-cinetica
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 
Calor y termodinámica
Calor y termodinámicaCalor y termodinámica
Calor y termodinámica
 

Similar a FISICA: TERMODINAMICA JUANITA VELASQUEZ 9-B (20)

TermodináMica
TermodináMicaTermodináMica
TermodináMica
 
TermodináMica
TermodináMicaTermodináMica
TermodináMica
 
TermodináMica
TermodináMicaTermodináMica
TermodináMica
 
Leyes de la termodinamica
Leyes de la termodinamicaLeyes de la termodinamica
Leyes de la termodinamica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Termodiná..
Termodiná..Termodiná..
Termodiná..
 
Termodinámica - U. Autonoma de Colombia-
Termodinámica - U. Autonoma de Colombia-Termodinámica - U. Autonoma de Colombia-
Termodinámica - U. Autonoma de Colombia-
 
Nestor perez t1
Nestor perez t1Nestor perez t1
Nestor perez t1
 
Tr
TrTr
Tr
 
Termodinámica
TermodinámicaTermodinámica
Termodinámica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
la-termodinamica.pdf
la-termodinamica.pdfla-termodinamica.pdf
la-termodinamica.pdf
 
Unidad didáctica línea 3
Unidad didáctica línea 3Unidad didáctica línea 3
Unidad didáctica línea 3
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
TermodináMica
TermodináMicaTermodináMica
TermodináMica
 
Termodinamica..pptx
Termodinamica..pptxTermodinamica..pptx
Termodinamica..pptx
 
Demostracion de-las-leyes-de-la-termodinamica
Demostracion de-las-leyes-de-la-termodinamicaDemostracion de-las-leyes-de-la-termodinamica
Demostracion de-las-leyes-de-la-termodinamica
 
Termodinamica
Termodinamica Termodinamica
Termodinamica
 
Termodinamica
TermodinamicaTermodinamica
Termodinamica
 
Termodinamica (2)
Termodinamica (2)Termodinamica (2)
Termodinamica (2)
 

Último

Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
Noe Castillo
 
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfPresentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
juancmendez1405
 

Último (20)

Tema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptxTema 14. Aplicación de Diagramas 26-05-24.pptx
Tema 14. Aplicación de Diagramas 26-05-24.pptx
 
Cerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencialCerebelo Anatomía y fisiología Clase presencial
Cerebelo Anatomía y fisiología Clase presencial
 
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdfPresentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
Presentación de medicina Enfermedades Fotográfico Moderno Morado (1).pdf
 
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
ESTEREOTIPOS DE GÉNERO A LAS PERSONAS? (Grupo)
 
Proyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistasProyecto Integrador 2024. Archiduque entrevistas
Proyecto Integrador 2024. Archiduque entrevistas
 
Diagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de BarbacoasDiagnostico del corregimiento de Junin del municipio de Barbacoas
Diagnostico del corregimiento de Junin del municipio de Barbacoas
 
Power Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptxPower Point: Luz desde el santuario.pptx
Power Point: Luz desde el santuario.pptx
 
3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico3.Conectores uno_Enfermería_EspAcademico
3.Conectores uno_Enfermería_EspAcademico
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
Orientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArteOrientación Académica y Profesional 4º de ESO- OrientArte
Orientación Académica y Profesional 4º de ESO- OrientArte
 
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ACERTIJO LA RUTA DE LAS ADIVINANZAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico4.Conectores Dos_Enfermería_Espanolacademico
4.Conectores Dos_Enfermería_Espanolacademico
 
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
Análisis de la situación actual .La Matriz de Perfil Competitivo (MPC)
 
Poemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6ºPoemas de Beatriz Giménez de Ory_trabajos de 6º
Poemas de Beatriz Giménez de Ory_trabajos de 6º
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptxMódulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
Módulo No. 1 Salud mental y escucha activa FINAL 25ABR2024 técnicos.pptx
 
5.Deicticos Uno_Enfermería_EspanolAcademico
5.Deicticos Uno_Enfermería_EspanolAcademico5.Deicticos Uno_Enfermería_EspanolAcademico
5.Deicticos Uno_Enfermería_EspanolAcademico
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
📝 Semana 09 - Tema 01: Tarea - Aplicación del resumen como estrategia de fuen...
 

FISICA: TERMODINAMICA JUANITA VELASQUEZ 9-B

  • 2. Que es? Rama de la física que estudia los efectos de los cambios de la temperatura, presión y volumen de los sistemas a un nivel macroscópico. También podemos decir que la termodinámica nace para explicar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo especificaremos que calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
  • 3. Que son.. las Leyes de la termodinámica? Primera ley de la termodinámica También conocida como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. La ecuación general de la conservación de la energía es la siguiente: E entra − E sale = Δ E sistema Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma: U = Q − W
  • 4. Segunda ley de la termodinámica Esta ley regula la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, La Segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía tal que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero. Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico. Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.
  • 5. Tercera ley de la termodinámica La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”. Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica. Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por la ciencias.
  • 6. Que es la Ley Cero? El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x e y) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas térmicas y dinámicas del sistema. A este principio se le llama del equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico ya que aquí las fuerzas electroestáticas se contradicen. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición nula.
  • 7. PRÁCTICA DE LABORATORIO vamos a tratar la termodinámica, que es la ciencia que se basa en el estudio de las propiedades microscópicas de los sistemas, intentando dar respuesta a las transformaciones que en ellos se producen, considerando las informaciones que se puedan obtener acerca del comportamiento microscópico de las partículas que los constituyen. Se la considera, por tanto, como el puente que relaciona ambas concepciones de la materia. Esta practica consistirá en hallar el calor específico de un cierto material. Materiales: pinzas, soportes, calorímetro, rejilla, 2 termómetros, 2 vasos precipitados, mechero, bola de cristal, báscula. Pasos a seguir para llevar a cabo la practica: Cogemos el vaso precipitado y lo llenamos de agua hasta conseguir mas o menos 100 mg de agua (aproximadamente), que luego medido en la báscula dará exactamente 101.1 Mg. de agua. Echamos el agua en el calorímetro y medimos la temperatura. Obtenemos que el agua está a 25ºC. 25ºC M AGUA = 101.1mg T AGUA = 25ºC
  • 8. C AGUA = 1cal/gr·ºC Después hemos echado una bola de cristal de M =19.7gr en otro vaso de precipitado que posteriormente hemos llenado de agua hasta cubrir la bola, para después calentarlo “al baño maría”. 90ºC M BOLA =19.7 gr / M BOLA + AGUA =120.8 T AGUA = 92ºC = T BOLA C =? En cuanto llega a aproximadamente 92ºC retiramos con cuidado para no quemarnos el vaso del mechero, le apagamos y acto seguido, sin esperar a que la temperatura de la bola descienda, atrapamos la bola con unas pinzas especiales e introducimos la bola dentro del calorímetro que previamente hemos abierto. Dejamos que repose y que la temperatura de la bola actúe sobre la del agua y segundos después observamos que la temperatura final a ascendido 2ºC, es decir, hasta 27ºC. 27ºC MEZCLA: AGUA + BOLA Entonces con los datos obtenidos procedemos a realizar las resoluciones necesarias para averiguar cual es el calor especifico de la bola de cristal. M AGUA · C AGUA · (T FINAL - T AGUA ) = -M BOLA · C BOLA · (T FINAL - T BOLA) 101.1· 1· (27-25) = -19.7 · C BOLA · (27-90) 202.2 = 1280.5· C BOLA
  • 9. Conclusión: hemos demostrado que aun mezclando sustancias como el agua y una bola de cristal, esta ultima, no varía mucho la temperatura final, solo la aumenta 2 ºC, por lo que se cumple la fórmula de: Qg = -Qp C BOLA = 0.157 cal/ grºC Qg = -Qp