Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Couts du capital dans les pays émergents

175 views

Published on

De nombreuses entreprises utilisent une prime de risque supplémentaire quand elles investissent dans les pays émergents. Ce faisant, elles considèrent que le développement international par croissance interne ou externe, est plus risqué qu’un projet mené dans un cadre national. Certes, personne ne conteste l’existence de risques supplémentaires à l’international comme le risque de change ou le risque politique.

Published in: Economy & Finance
  • Be the first to comment

  • Be the first to like this

Couts du capital dans les pays émergents

  1. 1. 1 Le Coût du Capital dans les Pays Emergents Franck Bancel1 et Thomas Perrotin2 Introduction De nombreuses entreprises utilisent une prime de risque supplémentaire quand elles investissent dans les pays émergents. Ce faisant, elles considèrent que le développement international par croissance interne ou externe, est plus risqué qu’un projet mené dans un cadre national. Certes, personne ne conteste l’existence de risques supplémentaires à l’international comme le risque de change ou le risque politique. Mais la théorie financière repose sur le principe de la diversification du risque qui ressemble à s’y méprendre à l’adage populaire selon lequel «il est bon de ne pas mettre tous ses œ ufs dans le même panier». En intégrant différents actifs au sein d’un portefeuille, on peut en réduire le risque tout en conservant la même espérance de rentabilité. Dès lors, toute la question est de savoir comment comparer les gains associés à la diversification et les risques supplémentaires associés à un projet de développement à l’international. Pour les entreprises ou les banques d’affaires qui doivent évaluer des projets d’investissements à l’étranger, les enjeux sont extrêmement importants. Le problème est d’autant plus complexe que les pays émergents ne sont pas, loin s’en faut, homogènes du point de vue du risque. Si certains pays ont une industrie importante (Corée du Sud par exemple) ou disposent d’un marché financier (Pologne ou Hongrie), d’autres présentent en revanche un niveau de développement beaucoup moins avancé. Bien évidemment, cette diversité limite la capacité à élaborer un cadre méthodologique permettant d’évaluer les risques des pays émergents. 1 Professeur Associé à l’ESCP, Directeur du Mastère de Finance. 2 Paribas Corporate Finance.
  2. 2. 2 Notons en outre que la théorie financière du risque a été construite pour l’essentiel aux Etats- Unis dans les années 50 et 60, sans prendre véritablement en compte la dimension internationale. Certes, il existe une abondante littérature sur les avantages liés à la diversification internationale mais ces travaux de recherche ne répondent que partiellement aux interrogations des praticiens, et cela pour plusieurs raisons. Tout d’abord, la théorie financière éprouve des difficultés à intégrer dans un même modèle l’ensemble des risques financiers (change, économique, politique, etc.) pour déterminer la prime de risque. Ensuite, la recherche en Finance ne dispose pas toujours de mesures de risque fiables dans de nombreux pays, ce qui limite le passage à la pratique Enfin, au plan empirique, les résultats sont souvent contradictoires. Par exemple, on ne sait pas si les multinationales bénéficient d’un quelconque avantage en matière de coût du capital du fait de la diversification géographique de leurs investissements. L’objectif de cet article est tout d’abord de présenter les enjeux conceptuels attachés à la détermination du coût du capital dans un cadre international. Il s’agit ensuite dans une deuxième partie de proposer une méthodologie permettant de déterminer le taux de rentabilité exigé dans un pays émergent. 1. Les enjeux conceptuels Cette partie expose un certain nombre de rappels conceptuels nécessaires à la compréhension des enjeux sur le calcul du coût des fonds propres dans un contexte international. Sont ensuite comparés les risques et les gains associés à un investissement à l’étranger. Enfin, les résultats des études empiriques sur l’impact du développement international sur le coût des fonds propres sont étudiés. 1.1. Rappels conceptuels Le modèle de référence le plus utilisé pratiquement pour déterminer le coût des fonds propres est le Modèle d’évaluation des actifs financiers (Médaf). Il est donc indispensable de le présenter ainsi que les principaux paramètres nécessaires à sa mise en œ uvre.
  3. 3. 3 1.1.1. Le Médaf Selon le modèle d’équilibre des actifs financiers (Médaf), un investisseur qui investit dans un projet i au sein de son espace national ou à l’étranger peut espérer une rentabilité E(Ri) égale à : E Ri( )= RF + βi E RM( )− RF[ ] où : RF est le taux sans risque du pays de l’investisseur exprimé dans sa monnaie nationale, βi est une mesure du risque non diversifiable du projet i, E (RM) est la rentabilité attendue du portefeuille de marché. 1.1.2. Le Bêta Selon le Médaf, l’investisseur ne doit être rémunéré que pour le risque systématique car le risque spécifique peut être éliminé par diversification. Ainsi, en fonction du niveau de risque systématique intégré dans un projet, ce dernier est plus ou moins risqué. Le bêta du projet mesure le risque systématique, c’est-à-dire le risque non diversifiable. Il est égal à : βi = Cov Ri ,RM( ) Var RM( ) = ρiM σi σM Un projet présente un bêta faible s’il est faiblement risqué (risque total faible) ou si le coefficient de corrélation avec le portefeuille de marché est faible. Ainsi, un projet qui serait extrêmement risqué, mais dont la rentabilité espérée covarierait faiblement avec celle du portefeuille de marché de référence aurait un bêta faible (inférieur à 1). Le bêta peut être calculé avec un indice local ou un indice international. Cela dépend de la zone économique de référence et de l’hypothèse que l’on fait quant à la segmentation des marchés. Si les marchés financiers sont segmentés, on calcule le bêta avec un indice local (CAC 40 pour un investisseur français). Si les marchés sont globalisés, le bêta doit être calculé avec un indice international comme le Morgan Stanley Capital International World Index. Bien évidemment, en fonction du mode de calcul retenu, la valeur du bêta sera différente.
  4. 4. 4 1.1.3. La prime de risque de marché La prime de risque varie considérablement selon l’horizon et le mode de calcul retenus (Bancel et Ceddaha, 1999). Une prime de risque de 6% aux Etats-Unis pour un horizon d’investissement long terme (10 - 30 ans) semble cependant faire l’objet d’un consensus si l’on en croit le récent article de Welch (1998). Ce dernier a interrogé une centaine d’économistes ou de financiers américains. Il ressort de cette enquête que les Professeurs de Finance et d’Economie recommandent d’utiliser un niveau de prime de risque proche du niveau historique en longue période constaté aux Etats-Unis. Notons d’ailleurs que l’opinion personnelle de Welch n’est pas tout à fait similaire. Pour lui, la prime de risque à considérer est 5%. Pour l’Europe, il n’existe par de mesures consolidées en longue période de la performance boursière. On dispose tout au plus de mesures pays par pays montrant que sur une période de 70 ans, la prime de risque obtenue dans la plupart des pays européens est plus faible que la prime américaine (Goetzmann W. et Jorion P., 1996). Dans le cas des pays émergents, les informations sont encore plus rares et généralement peu fiables. 1.2. Risques versus gains supplémentaires Le développement à l’international génère des risques supplémentaires, mais permet de diversifier les sources de revenus. Ce paragraphe présente les conditions de l’arbitrage entre les risques associés à un investissement à l’étranger et les gains attendus de la diversification. 1.2.1. Les risques associés à un investissement à l’étranger Un projet à l’étranger présente de nombreuses spécificités par rapport à un projet mené dans un cadre national, notamment en termes de risques (Reeb, Kwok et Baek (1998). Les principaux risques à prendre en compte sont : Le risque de change : l’internationalisation accroît la variabilité des cash-flows générés dans des devises risquées (Madura, 1992). En outre, on ne peut couvrir le risque de change dans sa totalité, certaines devises ou durées dans le temps n’étant pas «assurables».
  5. 5. 5 Le risque politique : les gouvernements des pays d’accueil peuvent imposer des mesures contraignantes pour la maison-mère : limitations au rapatriement des fonds, expropriation partielle ou totale, nationalisation, etc. Ce risque qui n’est pas négligeable dans de nombreux pays, présente l’inconvénient d’avoir des conséquences importantes sur les flux générés pour l’investisseur étranger. D’une certaine manière, le risque politique est « binaire ». S’il survient, l’investisseur perd la plus grande partie de ses gains futurs. Le risque d’asymétrie d’information : selon Lee et Kwok (1988), la surveillance des managers locaux pose de sérieuses difficultés, lié à l’existence de différences culturelles et l’inadaptation des systèmes d’information. Le risque «auto-réalisateur» : si un investisseur exige un taux de rentabilité élevé pour un projet à l’étranger, il va implicitement sélectionner les projets les plus risqués. Ex-post, il aura le sentiment que ce type de projets est effectivement très risqué. Cela l’incitera à exiger un taux encore plus élevé pour les projets suivants, accentuant ainsi le caractère auto-réalisateur d’une telle démarche.
  6. 6. 6 1.2.2. Les gains associés à la diversification internationale Le développement à l’étranger permet de générer des cash-flows qui ne sont pas en phase avec ceux générés dans le pays d’origine. L’existence de cycles économiques différents selon les zones géographiques considérées doit permettre de diversifier le risque national et donc, de générer des gains. Pour la plupart des auteurs, la diversification internationale de portefeuilles permet d’optimiser le couple rentabilité / risque. Cela est principalement dû au fait que les marchés financiers covarient faiblement entre eux. Si on examine les coefficients de corrélation (Campbell, 1991) entre les marchés nationaux (tableau 1), force est de constater leur faible niveau (de l’ordre de 0,40). Dès lors, la diversification internationale de portefeuille permet d’atteindre des portefeuilles présentant un meilleur couple rentabilité/risque. Ainsi, l’étude de Campbell (1991) montre que de nombreux portefeuilles (français, américain, suisse, espagnol, etc.) sont dominés par le portefeuille mondial. Sur le tableau 2, Solnik (1995) a déterminé la rentabilité et le risque des actifs financiers dans de nombreux pays. La monnaie de référence pour l’étude est le dollar américain. L’avant dernière colonne présente le risque total après intégration des mouvements de change alors que la dernière colonne expose le risque national. Par exemple, un investisseur américain qui achèterait en USD un portefeuille d’actions britanniques aurait supporté un risque égal à 26,3% (écart-type des rentabilités). Le même risque exprimé en monnaie nationale serait de 23,1%. Le portefeuille d’actions diversifié internationalement apparaît comme particulièrement attractif pour un investisseur américain. En effet, le risque du portefeuille international est plus faible que celui du portefeuille US (14,6% contre 15,6%) alors que sa rentabilité lui est supérieure (12,2% contre 11%). En outre, le portefeuille-monde défini par Solnik ou Campbell n’est pas optimal au sens du Médaf. Il serait sans doute possible de trouver un autre portefeuille international présentant un meilleur couple rentabilité/risque. Fontaine (1997) propose notamment une méthodologie pour construire un portefeuille international protégé contre le risque de change. Solnik et Longin (1998) insistent cependant sur le fait qu’en période de crise, et donc de forts rendements négatifs, les avantages associés à la diversification internationale sont moindres. Les deux auteurs déclarent : «Our empirical results indicate that the case for international risk diversification may have been somewhat overstated, since the risk protection brought by
  7. 7. 7 spreading assets across markets is reduced when it is needed most, i.e. in periods of extreme price movements ». Groslambert (1998) qui étudie le cas des pays émergents, montre également que les bourses de ces pays sont plus corrélées avec les bourses des pays développés lorsque ces dernières sont en baisse ou lorsqu’elles présentent une grande volatilité. Campbell (1991) souligne également la non stabilité des coefficients de corrélation au cours du temps. 1.3. Le risque des firmes multinationales : résultats empiriques Toute la question est de savoir si on peut transposer le principe de la diversification internationale de portefeuilles au cas des entreprises. Dans ce cas, les firmes multinationales seraient avantagées par le fait qu’elles génèrent des cash-flows dans de nombreux pays et présentent ainsi une forte capacité à réduire leur risque systématique. Plusieurs études empiriques ont cherché à mesurer le risque systématique des multinationales. Certaines considèrent que le risque systématique augmente. D’autres observent au contraire que le marché intègre les avantages associés à la diversification. 1.3.1. L’augmentation du risque systématique Jacquillat et Solnik (1978) et Senchack et Beedles (1980) ont montré que la détention de titres de firmes multinationales opérant massivement à l’étranger ne pouvait constituer un substitut à un portefeuille d’actions diversifié internationalement3 . On ne pourrait donc pas transposer directement aux entreprises multinationales, les conclusions des études portant sur la diversification de portefeuille. Des travaux plus récents vont également dans le sens de l’augmentation du risque systématique pour les entreprises multinationales. Selon Reeb, Kwok et Baek (1998), «it was posited that internationalization may increase the systematic risk of the firm by increasing σj. Arguments, such as foreign exchange risk, political risk, agency problem, asymetric information and self-fulfilling prophecy were suggested as plausible explanations for the increase». On retrouve le point de vue de Madura (1992), 3 Notons cependant que les résultats de ces études sont très sensibles au choix des indices de référence.
  8. 8. 8 selon lequel «foreign operations tend to have more uncertainty… (and) the greater the uncertainty… the larger should be the discount rate applied». 1.3.2. La diminution du risque systématique En revanche, de nombreuses études montrent que les firmes multinationales sont moins risquées que les firmes domestiques (Michel et Shaked (1986), Shaked (1986)). Shapiro (1990) conseille d’utiliser des taux d’actualisation similaires pour les projets nationaux et internationaux. Selon lui, un investissement dans un projet minier présente le même niveau de risque systématique quelle que soit sa localisation ( Canada, Chili, Etats-Unis, Nigéria, etc.) car le prix des matières premières dépend de la demande mondiale, elle même reliée à la conjoncture internationale. Selon Agmon et Lessard (1977) et Lessard (1983), un point de vue similaire s’impose. Le taux d’actualisation utilisé pour un projet étranger ne doit pas forcément être plus élevé que celui utilisé dans le cadre d’un projet national4 . Une étude récente de Doukas et Travlos (1988) a montré que les firmes qui se développent par croissance externe à l’étranger peuvent, dans certains cas, voir le prix de leur action s’accroître. C’est le cas lorsqu’une firme est achetée par une multinationale n’opérant pas au départ dans le pays ou dans le secteur concerné. Selon cette étude, l’impact sur le titre de la multinationale est d’autant plus fort que le pays d’origine est peu développé et que son activité économique est peu liée à l’activité économique du pays d’origine de la multinationale. Ainsi, selon Doukas et Travlos : « The abnormal returns are larger when firms expand into new industry and geographic markets— especially those less developed than the US economy ». 4 Dans une note de conjoncture de Paribas sur le secteur automobile datée de décembre 1998, on pouvait lire «les équipementiers se sont organisés pour amortir les chocs du marché. Mais leur meilleure protection est sans doute une présence sur plusieurs marchés internationaux dont les cycles ne sont généralement pas en phase. Les groupes nord-américains l’ont réalisé depuis longtemps. Les européens le mettent désormais en pratique aux Amériques. La crise asiatique va-t-elle leur permettre de pénétrer enfin ce continent jusqu’alors très protégé ?». Dans ces conditions, peut-on exiger un taux de rentabilité plus élevé pour un projet d’investissement à l’étranger mené par un équipementier ?
  9. 9. 9
  10. 10. 10 Tableau 2 : Rentabilité / risque des actifs financiers : comparaisons internationales Actifs Rentabilité Gain en Gain en Gain de Risque Risque anuelle capital dividende change total national (%) (%) (%) (%) (%) (%) Actions France 14 9 5,4 -0,4 24,6 21,7 Allemagne 14,2 6,1 4,5 3,6 21,2 18 Italie 6,7 8,5 3,1 -4,8 27 25,6 Pays-Bas 16,7 7,4 6,2 3,1 18,4 17,1 Espagne 8,5 4,7 7,3 -3,5 23,2 20,8 Suède 16,4 14,6 4,3 -2,5 22,3 22 Suisse 14,3 6,3 2,8 5,2 20,1 16,9 Royaume-Uni 14,6 11,3 5,8 -2,5 26,3 23,5 Australie 10,5 8 4,9 -2,5 26,9 23,1 Hong-Kong 22,2 19,3 5 -2,1 42,3 39,7 Japon 18,1 10,4 1,8 5,8 23,3 18,8 Singapour 17,7 11,9 2,6 3,3 31,1 30,4 Canada 9,6 7 4 -1,3 19,2 17,5 Etats-Uni 11 6,5 4,5 0 15,5 15,5 Portefeuille mondial d'actions 12,2 8,2 4 0 14,6 13,3 — indice mondial Obligations France 11 0,1 11,3 -0,3 13,8 6,8 Allemagne 12 0,4 8,1 3,5 14,5 5,8 Italie 8,2 -0,5 13,6 -4,9 13,9 8,2 Pays-Bas 12 0,5 8,6 3 13,7 5,8 Suisse 10,3 0,1 5,2 5 14,4 3,5 Royaume-Uni 9,3 0 11,7 -2,4 17 10,9 Japon 14,4 1,1 7,6 5,6 14,9 6,2 Canada 8,2 -0,9 10,4 -1,3 11,1 8,9 Etats-Unis 8,8 -0,4 9,2 0 8,6 8,6 Dépôts bancaires France 11,1 0 11,4 -0,3 11,5 Allemagne 10 0 6,5 3,5 12,2 Italie 8,6 0 13,5 -4,9 10,8 Pays-Bas 10,1 0 7,2 2,9 11,8 Suisse 9,9 0 5 5 14 Royaume-Uni 9,6 0 12 -2,4 11,5 Japon 12,2 0 6,6 5,5 11,3 Canada 8,4 0 9,8 -1,3 4,6 Etats-Unis 8,8 0 8,8 0 Les calculs sont basés pour les actions sur les indices et les dividendes de Morgan Stanley Capital International et pour les obligations et les dépôts abncaires sur les données de Lombard Odier : période d’observation : février 1970-mai 1989. Source : Solnik B., International Investments, 3e ed., Reading, Mass., Addison Wesley, 1995.
  11. 11. 11 2. Les méthodes pour calculer le taux d’actualisation Fondamentalement, il existe deux manières de prendre en compte le risque d’un projet. La première repose sur la prise en compte des flux corrigés par leur équivalent certain. La deuxième consiste à actualiser des flux risqués en utilisant un taux risqué. 2.1. L’ajustement des cash-flows L’ajustement des cash-flows part du principe que l’on ne sait pas « pricer » certains risques dans le taux d’actualisation. Certes, il existe des modèles permettant de mesurer le risque politique (Clark, 1997), mais ces outils relèvent du cadre théorique et ne sont pas applicables par les praticiens. Selon Shapiro (1978), il convient d’ajuster les cash-flows et non pas le taux d’actualisation, ce qui revient à raisonner en termes d’équivalent certain. Les flux du projet sont corrigés à partir d’un système de probabilité défini ex-ante, anticipant certains risques majeurs (comme le risque politique ou le risque de change). De manière pratique, il est envisageable pour évaluer le risque politique d’utiliser les mesures de risques fournies par les sociétés spécialisées : Bank of America World Information Services, Business Environment Intelligence, Control Risk Information Services, Economist Intelligence Unit, Euromoney, Institutional Investor, Political Risk Services (International Country Risk Guide), Political Risk Services, Moody’s Investors Service, etc. Si on considère le classement des pays effectué par Euromoney, on peut distinguer des pays présentant des niveaux de risque très différents (de 0 à 100). La plupart des grandes banques comme Paribas disposent également de mesures de risque pays. A partir de ces classifications, il est envisageable de définir une probabilité de défaillance pour chaque pays. Concernant le risque de change, le taux d’actualisation est fonction de la devise dans laquelle sont exprimés les flux de liquidités associés à un investissement. Ainsi, si les flux positifs générés par la société cible sont en monnaie locale, il est nécessaire de définir pour l’acquéreur un équivalent dans sa propre monnaie. Ces flux anticipés, évalués dans la monnaie de l’acquéreur, seront actualisés au taux de l’acquéreur.
  12. 12. 12 Exemple 1 : Prenons le cas d’une firme américaine spécialisée dans l’extraction du minerai de charbon. Cette entreprise veut acheter une entreprise étrangère du même secteur dans un pays où le risque politique est très élevé. Il existe une probabilité λ=25% que l’entreprise soit expropriée sans dédommagement par les autorités locales durant les années à venir (risque politique). La monnaie du pays devrait s’apprécier face au dollar US (5% par an). Le taux de change actuel est 1 USD = 5 unités de monnaie locale. Supposons que le taux de rentabilité exigé (risque systématique) pour un projet de ce type soit égal à 10% (calculé dans le pays et dans la devise de l’acquéreur) et que le cashflow pour l’actionnaire soit égal à 100 millions en monnaie locale par an jusqu’à l’année t (20 millions en USD). Les produits et les charges de la société sont en USD. La valeur V du projet est alors : V = (1- 0,25) * 20 *(1 + 5%) 1+ 10%( )t t=1 t=15 ∑ = 15 (1+ 5%) (1+ 10%) 1 + (1+ 5%) (1 + 10%) +… 1+ 5%( )15− 1 1+ 10%( )15− 1       V = 15 (1+ 5%) (1 + 10%) 1 − 1+ 5%( )15 1+10%( )15 1 − 1 + 5%( )1 ( 1+10%( )1           = 158 millions d' USD 2.2. La Valeur Actuelle Nette Ajustée La Valeur Actuelle Nette Ajustée consiste à actualiser différemment les flux de liquidités économiques des autres flux, notamment ceux qui relèvent de l’impact des choix de financement et des avantages accordés par un pays d’accueil. Contrairement à la VAN classique, la VAN ajustée intègre plusieurs taux d’actualisation : coût des fonds propres, coût de la dette et taux sans risque. Cette méthode est un outil intéressant car très intégrateur, permettant de prendre en compte l’ensemble des risques. Nous la présentons avant de développer un exemple.
  13. 13. 13 La VAN ajustée est égale à : VAN ajustée = FCFFt 1 + ke( )t=1 t=n ∑ + Dt * kd * TR 1+ kd( )t=1 t=n ∑ + Subt 1 + RF( )t=1 t=n ∑ FCFFt : Free-Cash Flows to the Firm (cashflow économique) au temps t actualisés au coût des fonds propres (ke) D : montant de la dette TR : taux d’impôt marginal des sociétés D * kd * TR : économies d’impôts liées aux frais financiers actualisées au coût de la dette (kd) Sub : subventions et avantages générés par le projet actualisés au taux sans risque (Rf) Exemple 2 : En reprenant l’exemple 1 concernant l’achat d’une société spécialisée dans l’extraction du charbon, en faisant l’hypothèse que la cible a été évaluée à 100 millions d’USD financés pour moitié par fonds propres (ke = 12% sans prise en compte du risque pays) et pour moitié par un emprunt in fine à 8% remboursable dans 10 ans. En outre, le taux marginal d’impôt à considérer est 40%. Le pays d’accueil fournit une subvention annuelle de 5 millions d’USD chaque année pendant 10 ans. Le taux sans risque aux Etats-Unis est égal à 5%. La VAN ajusté de ce projet est : V = − 100 + (1- 0, 25)* 20 * (1+ 5%) 1 + 12%( )t t=1 t=15 ∑ + 50 * 8%* 0,4 (1 + (8% * (1− 0, 4))t t=1 t=10 ∑ + 5 (1+ 5%)t t=1 t=10 ∑ V = -100 + 139,5 + 16,8 + 38,6 = 95 millions d’USD Ainsi, l’achat de la cible génère 95 millions d’USD pour les acheteurs. Pour ces derniers, la valeur réelle de la cible est égale à 195 millions d’USD. Si on enlève la valeur actuelle des subventions (hypothèse supplémentaire par rapport à l’exemple 1), on retrouve une valeur
  14. 14. 14 similaire (195 - 38,6 = 156,4 millions d’USD), 156,4 millions étant comparables aux 158 millions de l’exemple 1. 2.3. La détermination d’un taux corrigé pour le risque pays A notre connaissance, il n’existe pas de travaux de recherche directement utilisables par les praticiens permettant d’appréhender un taux d’actualisation intégrant le risque pays et le risque de change. La théorie de la diversification ne sait pas intégrer certains risques comme le risque politique. Les tentatives de Damodaran (1998) et Godfrey et Espinosa (1996) tentent de pallier ce manque. 2.3.1. Le modèle de Damodaran Damodaran (1998) propose une méthodologie permettant de déterminer le taux de rentabilité exigé pour un investissement dans les contextes les plus divers, notamment, dans les pays émergents. Damodaran propose de rajouter une prime pays à la prime de base définie par rapport au marché américain qui est la référence (bêta et taux sans risque sont obtenus avec des données américaines). La prime pays est fonction du risque de défaut du pays mesuré par une agence de rating (country bond spread), de la volatilité du marché actions et de la volatilité du marché obligataire du pays concerné. Cette prime de risque pays affectera le taux de rentabilité exigé en fonction de l’importance des ressources engagées. Si le projet est de faible taille, son impact sur le taux sera réduit. Country Equity Risk Premium = Country Default Risk σEquity σCountry Bonds       Exemple : Damodaran donne l’exemple de la société Aracruz Celulose, spécialisée dans la pâte à papier et cotée au Brésil. Selon S&P, le Corporate Spread brésilien est égal à 2%. La volatilité annuelle des marchés obligataires (Brady bonds) est égale à 10,9% ; celle des marchés actions 34,9%. Ainsi, selon Damodaran, la prime de risque brésilienne est égale à 6,29% = 2% 34, 9% 10,9%     
  15. 15. 15 Aracruz Celulose présente un bêta de 0,72 (Bêta US). Le taux sans risque est le taux des obligations d’Etat américain, c’est-à-dire 5%. La prime de risque de marché qui est calculée géométriquement de 1926 à 1997 vaut 6,10%. Ainsi, pour Aracruz Celulose, le coût des fonds propres est égal à : Coût des fonds propres = 5% + (0,72 * 6,10) + 6,29 = 15,68% Cela étant, comme l’essentiel des activités d’Aracruz Celulose se situe aux Etats-Unis, le coût des fonds propres corrigé est obtenu en intégrant la part représentée par le projet brésilien dans l’ensemble des activités de l’entreprise (λ= 25% par hypothèse). On a : Coût corrigé des fonds propres = 5% + (0,72 * 6,10) + (λ* 6,29) = 10,53% = 5% + (0,72 * 6,10) + (0,25 * 6,29) = 10,53% Critques du modèle de Damodaran : la méthodologie proposée présente certaines lacunes. 1) Les gains associés à la diversification ne sont pas intégrés. Investir dans un pays où les cycles économiques sont corrélés avec ceux du pays d’origine n’a pas les mêmes implications sur le taux de rentabilité exigé que s’ils ne le sont pas. 2) Dans l’exemple de Damodaran, on ne sait pas très bien si le choix du portefeuille de marché et du taux sans risque américain s’explique par le fait que la société Aracruz Celulose opère essentiellement aux Etats-Unis ou si le portefeuille américain constitue un proxy intéressant pour le portefeuille international. 3) La volatilité du marché actions dépend des caractéristiques des firmes qui sont cotées (secteur, leverage, etc.). Sur certaines bourses émergentes, seuls certains secteurs sont représentés (matière premières notamment). On mesure alors essentiellement un risque sectoriel. 4) Le modèle ne peut être mis en œ uvre dans les pays ne disposant pas d’un marché financier. Il ne contient aucune hypothèse théorique sous-jacente et n’est relié à aucun travail théorique antérieur en Finance. Il est d’ailleurs significatif que cet article ne présente aucune référence bibliographique.
  16. 16. 16 5) Si le projet est de taille réduite par rapport aux activités de la firme, le facteur λsera faible. Dans ce cas, le coût des ressources sera celui utilisé dans le cadre national. Dès lors, on risque de sous-estimer le risque associé à un investissement à l’étranger. 2.3.2. Le modèle de Godfrey et Espinosa Selon le modèle de Godfrey et Espinosa (1996), le taux de rentabilité que peut exiger un investisseur américain pour un investissement dans un pays émergent est égal à : Coût des fonds propres = [RFUS + Credit Spread] + [βUS * (US equity premium)] Le coût des fonds propres est donc égal au taux sans risque américain auquel on ajoute une prime traduisant le risque souverain. Cette prime est exprimée en USD et non en monnaie locale, le risque de change étant intégré au niveau des cash-flows. Le bêta n’en est pas un dans la mesure où seul le risque total (σi / σm) est évalué. Cela étant, afin de tenir compte de l’éventuelle corrélation entre le risque souverain et le risque de marché, le bêta est multiplié par 0,6 (40% du risque de marché pouvant être expliqué par le risque souverain). Critiques du modèle : la méthodologie proposée par Godfrey et Espinosa peut également être critiquée. 1) La prise en compte du risque total (σi / σm) est difficilement justifiable. On ne peut se référer aux avantages de la diversification et dans le même temps, en négliger les apports fondamentaux. 2) La prise en compte d’une mesure locale du risque pays (σi) pose le problème de l’étroitesse de certaines bourses de pays émergents. Là encore, ne risque-t-on pas de mesurer un risque sectoriel à la place d’un risque pays ? 3) La question de la corrélation entre le risque souverain et le risque de marché (Credit Spread / σi) ne peut être évacuée par un coefficient moyen de 0,6. Il faudrait pour chaque pays établir précisément la corrélation.
  17. 17. 17 2.4. Le modèle de Paribas En tenant compte des critiques précédentes, un modèle permettant de déterminer le taux de rentabilité exigé pour un investissement dans un pays émergent a été développé. 2.4.1. La problématique Le modèle est fondé sur l’idée selon laquelle trois risques sont associés à un investissement dans un pays émergent : — le risque de change, — le risque souverain (risque politique), — le risque économique. Pour la plupart des auteurs (Godfrey et Espinosa, 1996), le risque de change doit être intégré au niveau des cashflows. Les flux exprimés en USD ou en Euros sont actualisés à un taux exprimé dans une de ces devises. Le risque de change étant neutralisé, demeurent le risque politique et le risque économique, sachant que ces deux risques sont largement corrélés. En effet, la défaillance du pays ne manquera pas d’induire des conséquences importantes sur le fonctionnement de l’économie du pays. En Asie, au plus fort de la crise, la défaillance de certains Etats a entraîné une paralysie de l’activité économique. Même si une entreprise opère sur le marché international (c’est par exemple le cas d’une exploitation minière générant des revenus en USD), son fonctionnement peut être largement affecté par une défaillance de l’Etat souverain.
  18. 18. 18 2.4.2. Proposition Le modèle proposé pour établir une mesure du coût des fonds propres dans un pays émergent est le suivant : E (Ri) = (Rf + Spread souverain) + βi [E (Rm) - Rf] où : Rf est un taux sans risque exprimé en USD ou en Euros. Le spread souverain est une mesure du risque politique assumé par l’investisseur. βi est une mesure du risque économique non diversifiable dans le pays de l’investisseur, [E (Rm) - Rf] est la prime de risque de marché (USA (6%) ou Europe (4%)) Le choix de ce modèle s’explique pour les raisons suivantes : Fondamentalement, pour de nombreux projets, notamment ceux qui relèvent de secteurs globalisés (matières premières par exemple), le risque économique dans un pays émergent est le même que celui qui prévaut en Europe ou aux USA. Exploiter une mine de cuivre au Canada ou au Nigéria présente des risques similaires sur un plan économique. Pourquoi dès lors avantager ou pénaliser le Nigéria ? En revanche, le Nigéria n’est pas le Canada parce que le risque politique y est très différent. Ce risque pourrait au Nigéria déboucher sur l’arrêt de l’exploitation de la mine, voire l’expropriation des actionnaires étrangers. C’est pourquoi nous acceptons l’hypothèse de Shapiro (1990) selon laquelle le taux d’actualisation d’un investissement dans un pays étranger doit être le même que celui qui prévaut dans son pays d’origine. Cela étant, la très grande diversité des pays émergents et le risque politique très important qui prévaut dans certains pays obligent à intégrer une prime de risque politique. Selon nous, la meilleure mesure possible de ce risque et donc de la spécificité d’un investissement dans un pays émergent est justement le spread souverain, et non pas la volatilité de la bourse locale. 2.4.3. La mesure des risques
  19. 19. 19 Mesurer le risque souverain est assez facile car on dispose pour un grand nombre de pays des spreads souverains (ou spread de crédit sur la dette d’Etat) exprimée en USD (hors risque de change). Mesurer le risque économique local est beaucoup plus délicat car cela revient à mesurer une volatilité (σi) puis évaluer la corrélation (ρim) entre le marché national et le marché de référence (m), afin d’établir un bêta local (β = ρim * σi / σm). Comme nous l’avons souligné, compte tenu de la faible taille de la plupart des bourses des pays émergents et du fait que quelques entreprises représentent souvent la quasi totalité du marché, il nous semble très hasardeux d’utiliser ce type de mesure. 2.4.4. Les limites du modèle Que faire si le projet ne relève pas d’un secteur globalisé mais est au contraire très spécifique et dépendant de l’économie locale (ce qui est le cas, par exemple, d’un investissement dans le secteur de la grande distribution) ? Nous pensons qu’il n’est pas forcément nécessaire de procéder à un changement méthodologique, même si on atteint sans doute les limites de l’exercice, à savoir la mesure des gains associés à la diversification. En outre, comme nous l’avons souligné, même dans les pays où il serait possible de calculer un bêta local, le manque de fiabilité de ce type de mesures rendrait difficile son utilisation dans une évaluation (ou supposerait tout au moins de prendre des précautions). Doit-on raisonner en USD ou en Euros ? Un raisonnement en USD présente des avantages. Pour l’instant, la monnaie du commerce international est l’USD. Les flux étant en USD, il est plus « confortable » d’utiliser un coût des fonds propres exprimé en USD. Le marché américain étant le plus grand marché, il n’est pas déraisonnable d’utiliser des données américaines. Si on veut établir une évaluation en monnaie locale, cela suppose d’utiliser des taux et des flux en monnaie locale. Conceptuellement, les valeurs en USD et en monnaie locale devraient converger. Que faire quand on ne dispose pas d’une mesure du spread souverain ? De toute manière, il n’est pas souhaitable de raisonner directement à partir du spread du dernier emprunt émis par le pays. A la place, nous pensons qu’il est préférable de mettre en relation le rating pays (tableau 3) et le spread corporate moyen pour la classe de risque identifiée (tableau 4). Il s’agit d’éliminer par cette procédure les spécificités relatives à un emprunt donné (liquidité,
  20. 20. 20 réputation du pays, etc.). Standard & Poor’s et Moody’s fournissent des informations permettant de trouver des solutions dans de nombreux cas. En outre, dans le cas où la dette pays n’est pas évaluée par une agence, il est également possible de procéder par analogie et de comparer des pays notés avec d’autres qui ne le sont pas.
  21. 21. 21 Exemple : une entreprise appartenant au secteur pétrolier décide d’investir dans une exploitation pétrolière au Brésil. Le taux d’actualisation à retenir est : E (Ri) = [5,11% + 5,07%] + [1,02 * 6%] = 17,38% 5% : taux sans risque US 5,07% : spread souverain Brésilien (B+, soit un spread de 5,07% selon S&P) 1,02 : bêta du secteur 6% : prime de risque US Tableau 3 : Rating pays Argentine BB Salvador BB Liban BB- Qatar BBB Australie AA Estonie BBB+ Liechtenstein AAA Roumanie B- Autriche AAA Finlande AA Lituanie BBB- Russie SD Belgique AA+ France AAA Luxembourg AAA Singapoure AAA Bermudes AA Allemagne AAA Malaisie BBB- Rep. Slovèque BB+ Bolivie** BB- Grèce BBB Malte A Slovénie A Brésil B+ Honk-Kong A Mexique BB Afrique du Sud BB+ Bulgarie B Hongrie BBB Maroc BB Espagne AA Canada AA+ Islande A+ Pays-Bas AAA Suède AA+ Chili A- Inde BB Nouv. Zélande AA+ Suisse AAA Chine BBB+ Indonesie CCC+ Norvège AAA Taiwan AA+ Colombie BBB- Irlande AA+ Oman BBB- Thailande BBB- Iles Cook B- Israel A- Pakistan* SD Tri. & Tobago BB+ Costa Rica BB Italie AA Panama BB+ Tunisie BBB- Croatie BBB- Japon AAA Nouv Guinée B+ Turquie B Chypre A+ Jordanie BB- Paraguay* B+ UK AAA Rep. Tchèque A- Kazakhstan B+ Perou BB USA AAA Danemark AA+ Corée BBB- Philippines BB+ Uruguay BBB- Rep. Domin. B+ Koweit A Pologne BBB- Venezuela B+ Egypte BBB- Lettonie BBB Portugal AA
  22. 22. 22 Source : Standard & Poor’s, Sovereign list: Long-term rating, Foreign currency, March 24, 1999.
  23. 23. 23 Tableau 4 : Spreads corporate US Maturité Actif sans risque AAA AA A BBB BB+ BB/BB- B 1 4.65 4.9 5.06 5.35 5.91 6.54 7.46 7.74 5 5.02 5.64 5.85 6.13 6.72 7.66 8.43 9.49 10 5.11 5.89 6.12 6.40 7 8.07 8.78 10.18 15 5.51 6.39 6.64 6.92 7.52 8.67 N.A. N.A. 20 5.75 6.70 6.95 7.22 7.83 N.A. N.A. N.A. 25 5.73 6.73 6.99 7.26 N.A. N.A. N.A. N.A. Source : Standard & Poor’s, US Industrial Corporate Bond Yields Sovereign list: Long-term rating, Foreign currency, March 24, 1999. Conclusion Deux méthodes sont envisageables pour évaluer un investissement à l’étranger : l’ajustement des flux ou l’ajustement du taux d’actualisation. 2) Si on conserve le même taux d’actualisation que celui utilisé pour des projets nationaux parce qu’on considère que le risque non diversifiable est identique, on appliquera la méthode de l’équivalent certain. Dans ce cas, les flux sont corrigés pour tenir compte du risque de change et du risque pays. Cette méthode qui est sans doute la plus juste au plan conceptuel n’est cependant pas facile à mettre en œ uvre, notamment en ce qui concerne l’évaluation ex- ante du risque pays et de son impact sur les flux. En outre, les banques d’affaires n’ont pas pour habitude de la mettre en œ uvre. Dès lors, il ne sera pas facile d’imposer cette méthode à des tiers à l’occasion d’une opération. 2) Si on cherche à déterminer le taux d’actualisation pour un investissement dans un pays émergent, de nombreux problèmes de mesure apparaissent. Quels risques prendre en compte ? Sont-ils corrélés entre eux ? Comment évaluer la corrélation ? etc. Le modèle que nous avons proposé cherche à apporter une réponse simple, partant du fait que les mesures du risque économique à partir de la volatilité des bourses locales sont très peu fiables et que le risque économique d’un projet dans un pays émergent est proche de celui assumé dans l’espace
  24. 24. 24 national. Dans ce contexte, la détermination de la prime de risque pays grâce au spread souverain nous semble la meilleure approche possible.
  25. 25. 25 Bibliographie Agmon T. et Lessard D., Investors recognition of corporate international diversification: a sysnthesis, Journal of Finance, 38, juin 1983, p. 925-984. Bancel F. et Ceddaha F., Vers une prime de risque unique ?, Analyse Financière, n°119, p. 81-92, juin 1999. Campbell H., The world price of covariance risk, Journal of Finance, 46, 1991, p.111-158. Clark E., Valuing political risk, Journal of International Money ann Finance, Vol 16, n°3, p.477-490, 1997. Damodaran A., Estimating equity risk premiums, Stern School of Business, Working paper, NY, 1998. Fontaine P., Gestion des portefeuilles internationaux, In Encyclopédie de Gestion, 1997, p. 548-571. Doukas J. et Travlos N., The effect of corporate wealth: evidence from international acquisitions, Journal of Finance ,Vol XLIII, n°5, décembre 1988, p. 1161-1174. Godfrey S. et Espinosa R., A practical approach to calculating the costs of equity for investments in emerging markets, Journal of Applied Corporate Finance, Fall, 1996, p. 80- 89. Goetzmann W. et Jorion P., 1996, A century of global stock markets, Working, Université of California at Irvine et Yale School of Management. Groslambert B., De l’intérêt des marchés émergents dans une gestion internationale de portefeuille, CEFi, Université d’Aix-Marseille, 1998. Jacquillat B. et Solnik B., Multinational are poor tools for diversification, Journal of portfolio Management, 4, Hiver, 1978., p. 8-12. Lee K. et Kwok C, Multinational corporations vs. Domestic Corporations: International Environmentals Factors and Determinants of Capital Structure, Journal of International Business Studies, p. 195-217, 1988. Lessard D., Principles of International portolio selection, In Abraham George and Ian Giddy, editors, International financial handbook. New York, NY: John Wiley & Sons, 1983. Madura J., International Financial Management, 3rd edition, St Paul, MN: West Publishing Company, 1992. Michel A. et Shaked U., Multinational corporations vs domestic corporations: financial performance and caracteristics, Journal of International Business, Automne, 1986, p.89-100. Mikkelson W., Convertible calls and security returns,Journal of Financial Economics, 1981, p.237-264. Reeb D., Kwok C. et Baek H., Systematic risk of the multinational corporation, Journal of International Business Studies, 1998, p. 263-279. Senchack A. et Beedles W., Is indirect international diversification deisrable?, Journal of Portfolio Management, 6, hiver 1980, p. 49-57. Shaked I., Are multinational safer?, Journal of International Business, Automne, 1986, p.83- 106. Shapiro A., Capital budgeting for the multinational corporation, Financial Management, p.7- 16, 1978. Shapiro A., Modern corporate finance, Mac Milan, 1990. Solnik B., International Investments, Third Edition, Addison-Wesley publishing Company, June 1996. Solnik B. et Dumas B., The world price of foreign exchange risk, Journal of Finance, Vol L, n°2, juin 1995.
  26. 26. 26 Solnik B. et Longin F., Correlation structure of international equity markets during extremely volatile periods, Cahier de Recherche HEC, CR 646/1998. Welch I., Views of Financial Economists on the equity premium and other issues, UCLA/Anderson Finance Working Paper 10-98, 1998.

×