Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Descomposicio Factorial[1]

583 views

Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Descomposicio Factorial[1]

  1. 1. 60 2 30 Descomposició d’un nombre en producte de nombres primers (descomposició factorial). Descomposició factorial de 60: 1. Busquem el primer nombre primer, és a dir, el més petit possible, que sigui divisor de 60 (aplicant els criteris de divisibilitat). <ul><li>Provem amb el 2 . 60 és divisible per 2 ? </li></ul><ul><li>60 acaba en xifra parell, per tant SI que és divisible per 2 </li></ul>Fem la divisió: 60 2 3 0 0 0 Posem el nombre que volem descomposar i una línia vertical a la seva dreta
  2. 2. 60 2 30 Descomposició d’un nombre en producte de nombres primers (descomposició factorial). Descomposició factorial de 60: 2. Tornem a fer el mateix. Busquem el primer nombre primer, és a dir, el més petit possible, però que ara sigui divisor de 30 (aplicant els criteris de divisibilitat). <ul><li>Provem amb el 2 . 30 és divisible per 2 ? </li></ul><ul><li>30 acaba en xifra parell, per tant SI que és divisible per 2 </li></ul>Fem la divisió: 30 2 1 1 0 5 2 15 0
  3. 3. 60 2 30 Descomposició d’un nombre en producte de nombres primers (descomposició factorial). Descomposició factorial de 60: 3. Tornem a fer el mateix. Busquem el primer nombre primer, és a dir, el més petit possible, però que ara sigui divisor de 15 (aplicant els criteris de divisibilitat). <ul><li>Provem amb el 2 . 15 és divisible per 2 ? </li></ul><ul><li>No acaba en xifra parell, per tant NO és divisible per 2 </li></ul>Fem la divisió: 15 3 0 5 2 15 3 5 <ul><li>Provem amb el 3 . 15 és divisible per 3 ? </li></ul><ul><li>la suma de les seves xifres 1+5=6 és múltiple de 3, </li></ul><ul><li>per tant SI que és divisible per 3 </li></ul>
  4. 4. 60 2 30 Descomposició d’un nombre en producte de nombres primers (descomposició factorial). Descomposició factorial de 60: 4. Tornem a fer el mateix. Busquem el primer nombre primer, és a dir, el més petit possible, però que ara sigui divisor de 5 (aplicant els criteris de divisibilitat). <ul><li>5 ja és nombre primer. Per tant: </li></ul><ul><li>El primer nombre que és divisible per 5 , és el mateix 5 </li></ul>Fem la divisió: 5 5 1 0 2 15 3 5 5 1
  5. 5. 60 2 30 Descomposició d’un nombre en producte de nombres primers (descomposició factorial). Descomposició factorial de 60: La descomposició factorial l’expressarem així: Multiplicant els nombres que queden a la dreta de la línia vertical 2 15 3 5 5 1 60 = 2 2 3 5 = 2 2 • 3 • 5 • • • Evidentment aquests nombres han de ser PRIMERS
  6. 6. 315 Descomposició d’un nombre en producte de nombres primers (descomposició factorial). Fes la descomposició factorial de 315: 315 és divisible per 2? NO 315 és divisible per 3? SI 3 105 105 és divisible per 2? NO 105 és divisible per 3? SI 3 35 35 és divisible per 2? NO 35 és divisible per 3? NO 35 és divisible per 5? SI 5 7 7 ja és nombre primer 7 1 315 = 3 • 3 • 5 • 7 = 3 2 • 5 • 7

×