Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

My handwriting styler

1,169 views

Published on

데이터야놀자 2019 행사에서 [GAN을 활용한, 내 손글씨를 따라쓰는 인공지능] 세션으로 발표한 자료입니다.
발표에 소개된 프로젝트에 관한 더 자세한 글은 https://bit.ly/2VVWJnQ 에서 확인하실 수 있습니다.

Published in: Data & Analytics

My handwriting styler

  1. 1. GAN , @JEINA 2019
  2. 2. 2019 /84 # _ _ ‘ ’ # , # , # “ ” , “ ” # , 2
  3. 3. 2019 /843
  4. 4. 2019 /844
  5. 5. 2019 /84 # _ # _ # _ _ , 5
  6. 6. 2019 /84 1. - - - / 2. - - (GAN) - - & 3. - & 6
  7. 7. 2019 /84 # # , # # https://jeinalog.tistory.com/15 https://jeinalog.tistory.com/16 https://github.com/jeina7/Handwriting_styler 7
  8. 8. 2019 /84 # - 8
  9. 9. 2019 /84 # - 9
  10. 10. 2019 /84 / # - 10
  11. 11. 2019 /84 (28×28) # - , Style Transfer ? ! 11
  12. 12. 2019 /84 # - 12
  13. 13. 2019 /84 # - 13
  14. 14. 2019 /84 # - “ ” 14
  15. 15. 2019 /84 # - “ ” ? ? ? … ? 15
  16. 16. 2019 /84 # - ? Reference ! 16
  17. 17. 2019 /84 # - https://github.com/kaonashi-tyc/zi2zi zi2zi 17
  18. 18. 2019 /84 # - https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html zi2zi 18
  19. 19. 2019 /84 # - zi2zi tensorflow https://github.com/kaonashi-tyc/zi2zi/blob/master/model/unet.py 19
  20. 20. 2019 /84 # - zi2zi tensorflow 20
  21. 21. 2019 /84 # - 21
  22. 22. 2019 /84 # - 22
  23. 23. 2019 /84 # - : ! , 23 https://jeinalog.tistory.com/13
  24. 24. 2019 /84 # - , .. 24
  25. 25. 2019 /84 # - : ! Abstract 25
  26. 26. 2019 /84 # - Introduction : ! 26
  27. 27. 2019 /84 # - : ! 27
  28. 28. 2019 /84 # / - 28
  29. 29. 2019 /84 # / - 29
  30. 30. 2019 /84 # / - … 30
  31. 31. 2019 /84 # / - 중국어 한국어 31
  32. 32. 2019 /84 # / - zi2zi: tensorflow 32
  33. 33. 2019 /84 # / - PyTorch로 스스로 구현 33
  34. 34. 2019 /84 # 1. : / , / 2. : 3. / : , 34
  35. 35. 2019 /84 # - 2 step training 35
  36. 36. 2019 /84 # - 2 step training 36
  37. 37. 2019 /84 # - 2 step training , 37
  38. 38. 2019 /84 # - 2 step training - - - - - - 38
  39. 39. 2019 /84 # - GAN & Unet 39
  40. 40. 2019 /84 # - GAN & Unet 40
  41. 41. 2019 /84 # - GAN & Unet 41
  42. 42. 2019 /84 # - GAN & Unet Input : Noise Output : Target Image # Generator : Noise # Discriminator : Fake Image , Real Image (Adversarial) , Generator Real 42
  43. 43. 2019 /84 # - GAN & Unet Input : Source Image ( ) Output : Target Image ( ) # : , , Noise GAN ! 43
  44. 44. 2019 /84 # - GAN & Unet Input : Source Image ( ) Output : Target Image ( ) # “ " , ! 44
  45. 45. 2019 /84 # - GAN & Unet 45
  46. 46. 2019 /84 # - GAN & Unet Input : Source Image ( ) Output : Target Image ( ) # # Auto Encoder & GAN 46
  47. 47. 2019 /84 # - GAN & Unet Input : Source Image ( ) Output : Target Image ( ) # # Auto Encoder & GAN 47
  48. 48. 2019 /84 # - GAN & Unet 48
  49. 49. 2019 /84 # - GAN & Unet Category vector Category vector 49
  50. 50. 2019 /84 # - GAN & Unet Encoder Decoder Category vector 50
  51. 51. 2019 /84 # - GAN & Unet Concatenate Category vector Encoder Decoder , 51
  52. 52. 2019 /84 # - 52
  53. 53. 2019 /84 # - 53
  54. 54. 2019 /84 # - Target + source 25 3,000 75,000 54
  55. 55. 2019 /84 # - 55
  56. 56. 2019 /84 # - Crop Resize Padding 56https://github.com/jeina7/Handwriting_styler/blob/master/common/utils.py
  57. 57. 2019 /84 # - Crop Resize Padding 57
  58. 58. 2019 /84 # Pre-Training & Transfer Learning 58
  59. 59. 2019 /84 # Pre-Training & Transfer Learning 59
  60. 60. 2019 /84 # Pre-Training & Transfer Learning (150 epoch) 60 GPU : P100 (50hrs)
  61. 61. 2019 /84 # Pre-Training & Transfer Learning 61
  62. 62. 2019 /84 # Pre-Training & Transfer Learning 62 (350 epoch)GPU : P100 (20min)
  63. 63. 2019 /84 Start Ground Truth # Pre-Training & Transfer Learning 63
  64. 64. 2019 /84 Result Ground Truth # Pre-Training & Transfer Learning 64
  65. 65. 2019 /84 [Ground Truth] [Generated] # Pre-Training & Transfer Learning 65
  66. 66. 2019 /84 # Interpolation - 66
  67. 67. 2019 /84 # Interpolation - 67
  68. 68. 2019 /84 WALKING IN THE LATENT SPACE“ ” Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016 # Interpolation - 68
  69. 69. 2019 /84 Category vector # Interpolation - 69
  70. 70. 2019 /84 Category vector [0, 0, 0, 0, 1, 0, 0, … ] one-hot vector Gaussian normal random vector [0.253.., 0.891.., 0.412.., 0.309.., … ] (128 ) # Interpolation - 70
  71. 71. 2019 /84 # Interpolation - 71
  72. 72. 2019 /84 STEP! # Interpolation - 72
  73. 73. 2019 /84 STEP! , # Interpolation - 73
  74. 74. 2019 /84 # Interpolation - 74
  75. 75. 2019 /84 ‘ ’ , Mapping # Interpolation - 75
  76. 76. 2019 /84 # & 76
  77. 77. 2019 /84 # & 77
  78. 78. 2019 /84 # & : / : : , 78
  79. 79. 2019 /84 # & ? , 79
  80. 80. 2019 /84 # & 80
  81. 81. 2019 /84 # & 0 ×10 =0 81
  82. 82. 2019 /84 # & 0 ×10 =0 1 ×10 =10 82
  83. 83. 2019 /8483
  84. 84. 2019 /84 # Jeina’s De’vLog https://jeinalog.tistory.com/ GitHub https://github.com/jeina7 , Wrinie (1) - https://jeinalog.tistory.com/15 , Wrinie (2) - https://jeinalog.tistory.com/16 https://github.com/jeina7/Handwriting_styler 84 E-mail jeina.code@gmail.com

×