Successfully reported this slideshow.
Your SlideShare is downloading. ×

Interactive Visual Analysis of Human Emotions

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 29 Ad

Interactive Visual Analysis of Human Emotions

Download to read offline

People’s write-ups, such as online reviews and personal micro-blogs, often reflect their emotions, ranging from just-in-the-moment sentiment to long-lasting mood. In this talk, I will first give an overview on modeling human emotions encapsulated in people’s write-ups. I will then sample two visual analytic systems that use very different methods to automatically extract and visualize human emotions for two very different purposes. The first is an interactive visual analytic system that automatically summarizes human sentiment captured in online reviews and leverages the power of a crowd to rectify the imperfections in machine sentiment analysis. The second is a timeline-based visual analytic tool that extracts and visualizes a person’s moods over time based on the person’s tweets. Finally, I will discuss the challenges of inferring human emotional DNA in general and potential research directions.

People’s write-ups, such as online reviews and personal micro-blogs, often reflect their emotions, ranging from just-in-the-moment sentiment to long-lasting mood. In this talk, I will first give an overview on modeling human emotions encapsulated in people’s write-ups. I will then sample two visual analytic systems that use very different methods to automatically extract and visualize human emotions for two very different purposes. The first is an interactive visual analytic system that automatically summarizes human sentiment captured in online reviews and leverages the power of a crowd to rectify the imperfections in machine sentiment analysis. The second is a timeline-based visual analytic tool that extracts and visualizes a person’s moods over time based on the person’s tweets. Finally, I will discuss the challenges of inferring human emotional DNA in general and potential research directions.

Advertisement
Advertisement

More Related Content

Similar to Interactive Visual Analysis of Human Emotions (20)

Recently uploaded (20)

Advertisement

Interactive Visual Analysis of Human Emotions

  1. 1. Interac(ve  Visual  Analysis  of   Human  Emo(ons   Sen(ment,  Mood,  and  Emo(onal  DNA       Michelle  X.  Zhou   mzhou@juji-­‐inc.com  
  2. 2. Modeling  Human  Emo(ons   Basic  Emo*ons:  Moment  of  feelings   “I  was  so  happy”     “I  am  very  sad”     Human  emo2ons  are  complex  and  mul2-­‐dimensional     [Frijda  1993;  Ekman  2007]    
  3. 3. Modeling  Human  Emo(ons   Human  emo2ons  are  complex  and  mul2-­‐dimensional     “The  app  is  just  awesome”   “The  app  is  dreadful  and  hard  to  use”     Sen*ment:  A  feeling  toward  a  situa(on  
  4. 4. Modeling  Human  Emo(ons   Human  emo2ons  are  complex  and  mul2-­‐dimensional     “Recently  I  have  been  in  a  good  mood”   Mood:  Longer-­‐las(ng  feelings  over  a   period  of  (me   [Frijda  1993;  Ekman  2007]    
  5. 5. Modeling  Human  Emo(ons   – Emo(onal  outlook  “I  am  very  op2mis2c”   – Emo(onal  vola(lity  “I  am  quite  calm”   – Emo(onal  resilience   Human  emo2ons  are  complex  and  mul2-­‐dimensional     Emo*onal  DNA:  Unique  emo(onal   paXerns  and  characteris(cs     [Davidson  &  Begley  2012]  
  6. 6. Modeling  Human  Emo(ons   Basic   Emo*ons   Sen*ment   Mood   Emo*onal   DNA   Thing   Outlook   Vola(lity   Resilience  
  7. 7. PEARL:  Interac(ve  Visual  Analy(cs   of  Personal  Emo(onal  Style  from   Social  Media     [Zhao  et  al.  VAST  2014]  
  8. 8. Personal  Emo(onal  Style  from   Social  Media   •  What  are  your  basic  emo(ons  conveyed   by  your  current  posts?   •  What  is  your  mood  over  the  (me   period  X?   •  What  is  your  overall  emo(onal  style?    
  9. 9. Live  Demo   hXp://www.cs.toronto.edu/~jianzhao/webapp/Pearl/pearl.html  
  10. 10. Emo(onal  Psychology:  Types  of   Emo(on   •  8  basic  emo(ons   •  Complex  emo(ons   composed  of  basic   ones   [Plutchik  2001]  
  11. 11. Emo(onal  Psychology:  Dimensions   of  Emo(on   •  Valence   – Posi(vity   •  Arousal   – Intensity   •  Dominance   – In-­‐control   Valence   Arousal   Happy   Rage   Dominance   Fear   Anger  Sad   [Mehrabian  1980]  
  12. 12. Analyze  Personal  Emo(ons  from   Text:  Detect  Basic  Emo(ons   •  Lexical  based   approach   •  Aggregate   the  amount   of  evidence  +   VAD  scores     Valence   Arousal   Dominance     Anger   v1   a1   d1   An*cipa*on   v2   a2   d2   Disgust     .   .   .   Fear     .   .   .   Joy     .   .   .   Sadness     .   .   .   Surprise     .   .   .   Trust     v8   a8   d8   E(t):  [M4x8(t)]       [Calvo  &  Kim  2013]  
  13. 13. Analyze  Personal  Emo(ons  from   Text:  Infer  Mood   Constraint-­‐based  co-­‐clustering  to   aggregate  basic  emo(ons  to  infer  mood   – Temporal  proximity   – Emo(on  proximity   – Seman(c  proximity   [Pan  et  al.  IUI  2013]  
  14. 14. Visually  Iden(fying  Emo(onal  Style   Valence   Emo(on Bubble  +   Band  
  15. 15. Visually  Iden(fying  Emo(onal  Style   Resilience   Outlook   Vola(lity  
  16. 16. Evalua(on   •  How  good  is  our  emo(on  analysis?   •  How  useful  is  our  analysis?   – Discovery  of  personal  emo(onal  style   – Discovery  of  others’  emo(onal  style  
  17. 17. Ground  Truth  vs.  Derived  Emo(ons   10  people  over  1  month  of  tweets,  ~60  segments     Cohen’s  Kappa  indica(ng  the  agreement  between  ground   truth  and  derived  emo(ons.  
  18. 18. Discovering  Personal  Emo(ons     •  6  people,  each   analyzed  over  2-­‐ year  of  own   tweets  (600-­‐4000)   •  Self  awareness   •  Valida(on   Valence  
  19. 19. Discovering  Others’  Emo(ons     •  50  Turkers,  44  valid  results   •  10  emo(on  analysis  tasks  on  user  data  w/  ground  truth    “in  which  2me  period,  the  person  is  most  emo2onally    submissive?”    
  20. 20. OpinionBlocks:  Crowd-­‐Powered,   Self-­‐Improving  Visual  Analy(cs  of   Opinion  Text   [Hu  et  al.  INTERACT  2013]  
  21. 21. The  Challenge   •  User  challenge   – Much  content  and  liXle   (me   •  18000  reviews  for  Kindle  Fire   •  Research  challenge   – Sen(ment  analysis  is  hard   – Feature-­‐based  sen(ment   analysis  is  harder   [Liu  2012]  
  22. 22. OpinionBlocks  
  23. 23. Crowd-­‐Powered,  Self-­‐Enhancing   Visual  Sen(ment  Analysis  
  24. 24. How  Well  A  Crowd  Can  Help   88.8%  users  made  right   correc(ons   95%  users  were  willing  to   correct  machine  mistakes  
  25. 25. Quality  of  Improvements     •  Two  crowds  performed  same   set  of  tasks   – First  crowd  made  system   improvements   – Second  crowd  used  the   improvements   •  A  set  of  non-­‐trivial  tasks   •  Significantly  improved  task   comple(on  (me  
  26. 26. Remaining  Challenges   •  Limita(ons  in  current  emo(on  analysis   –  Lexical  approach   –  Full  NLP   •  Visual  summariza(on  of  analy(c  results     –  Need  to  take  into  account  of  analy(c  confidence/uncertainty   •  Real-­‐(me,  incremental  emo(on  analysis   •  Modeling  paXerns  of  emo(ons     –  Temporal   –  Individual  differences  
  27. 27. Acknowledgement   •  Jian  Zhao   •  Mengdie  Hu   •  Liang  Gou   •  Huahai  Yang   •  Yunyao  Li   •  Fei  Wang   •  Eben  Haber  
  28. 28. Call  for  Submissions   hXp://(is.acm.org/  
  29. 29. References   •  J.  Zhao,    L.  Gou,  F.  Wang,  M.X.  Zhou:  PEARL:  An  interac(ve  visual  analy(c  tool  for   understanding  personal  emo(on  style  derived  from  social  media.IEEE  VAST  2014:  203-­‐212.   •  M.Hu,  H.  Yang,  M.X.  Zhou,  L.  Gou,  Y.  Li,  E.  Haber:  OpinionBlock:  A  Crowd-­‐Powered,  Self-­‐ improving  Interac(ve  Visual  Analy(c  System  for  Understanding  Opinion  Text.  INTERACT  (2)   2013:  116-­‐134.   •  S.  Pan,  M.X.  Zhou,  Y.  Song,  W.  Qian,  F.  Wang,  S.  Liu:  Op(mizing  temporal  topic  segmenta(on   for  intelligent  text  visualiza(on.  IUI  2013:  339-­‐350.   •  N.  H.  Frijda.  Moods,  emo(on  episodes  and  emo(ons.  In  M.  Lewis  and  J.  M.  Haviland,  editors,   Handbook  of  Emo(ons,  pages  381–403.  Guilford  Press,  1993.   •  P.  Ekman.  Emo(ons  Revealed.  Holt  Paperbacks,  2  edi(on,  2007.   •  R.  J.  Davidson  and  S.  Begley.  The  Emo(onal  Life  of  Your  Brain:  How  Its  Unique  PaXerns  Affect   the  Way  You  Think,  Feel,  and  Live–and  How  You  Can  Change  Them.  Hudson  Street  Press,   2012.   •  B.  Liu.  Sen(ment  Analysis  and  Opinion  Mining.  Morgan  &  Claypool  Publishers,  2012.   •  A.  Mehrabian.  Basic  Dimensions  for  a  General  Psychological  Theory.  Oelgeschlager,  Gunn  &   Hain  Inc.,  1980.   •  R.  A.  Calvo  and  S.  Mac  Kim.  Emo(ons  in  text:  Dimensional  and  categorical  models.   Computa(onal  Intelligence,  29(3):527–543,  2013.   •  R.  Plutchik.  The  nature  of  emo(ons.  American  Scien(st,  89(4):344,  2001.  

×