Geochemical and Hydrologic
Controls on Mine Drainage:
Anthracite Coal Fields, PA, 1975-2012
J.E. Burrows1, S.C. Peters1, a...
Exposure to oxygen and moisture produces Fe2+, SO4, and
acid:
FeS2 + 14Fe3+ + 8H2O  15Fe2+ +2SO4
2- +16H+ (1)
Fe+3 Ferric Iron
Fe+2 Ferrous Iron
Aerobic
High pH
Anaerobic
Low pH
Exposure to oxygen and moisture produces Fe2+, SO4, and
acid:
FeS2 + 14Fe3+ + 8H2O  15Fe2+ +2SO4
2- +16H+ (1)
Fe2+ is tra...
pH
Site 2
Site 3
Higher pH
results in the
precipitation
of Fe
Lee et al, 2002, Appl. Geochem.
Site 1
Wood et al., 1999, Quat. Jour. Eng. Geo.
Wood et al., 1999, Quat. Jour. Eng. Geo.
Scranton
Wilkes-Barre
Bethlehem
Sampling Sites
Coal Mining Operations
Cities
Scranton
Wilkes-Barre
Bethlehem
Sampling Sites
Coal Mining Operations
Cities
1975 1991 1999 2012
Growitz et al., 1985,
USGS Report
Wood, 1991,
USGS Report
Cravotta, 2008,
Appl. Geochem.
This Study
2.5
3.5
4.5
5.5
6.5
7.5
2/9/99 7/9/99 12/6/99 5/4/00 10/1/00
pH
Sampling Date (M/D/Y)
pH
Askam shaft
2.5
3.5
4.5
5.5
6.5
7...
0
10
20
30
40
50
60
1975 1985 1995 2005
Fe(mg/L)
Sampling Year
0
100
200
300
400
500
600
700
1975 1985 1995 2005
SO4(mg/L)...
0
10
20
30
40
50
60
1975 1985 1995 2005
Fe(mg/L)
Sampling Year
0
100
200
300
400
500
600
700
1975 1985 1995 2005
SO4(mg/L)...
0
10
20
30
40
50
60
1975 1985 1995 2005
Fe(mg/L)
Sampling Year
0
100
200
300
400
500
600
700
1975 1985 1995 2005
SO4(mg/L)...
0
10
20
30
40
50
60
1975 1985 1995 2005
Fe(mg/L)
Sampling Year
0
100
200
300
400
500
600
700
1975 1985 1995 2005
SO4(mg/L)...
Time Interval
Parameter ’75-‘91 ’91-‘99 ’99-‘12 ’75-‘12
Fe (mg/L) 0.080 0.005 0.081 0.165
SO4 (mg/L) 0.600 <0.001 0.091 0....
0
10
20
30
40
50
60
1975 1985 1995 2005
Fe(mg/L)
Sampling Year
0
100
200
300
400
500
600
700
1975 1985 1995 2005
SO4(mg/L)...
EPCAMR John Welsh
Flux = Concentration x Discharge
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
1975 1985 1995 2005
Feflux(mg/s)
Sampling Year
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1975...
Demchak et al., 2004, Jour. Env. Qual.
Above: exposed rock surfaces facilitate O2 transport and
continual pyrite dissolution, alkalinity consumption
Demchak et a...
Demchak et al., 2004, Jour. Env. Qual.
Above: exposed rock surfaces facilitate O2 transport and
continual pyrite dissoluti...
0
20
40
60
80
100
120
140
160
180
200
Fe(mg/)
pH SO4Fe
A) B) C)
2.5
3.5
4.5
5.5
6.5
7.5
pH
0.5
1.5
2.5
3.5
4.5
5.5
6.5
197...
Sampling Year
Drainage
Type
‘75-’91 ‘91-’99 ‘99-’12 ‘75-’12
Above
pH 0.075 0.106 0.204 0.108
Fe 0.867 0.089 0.402 0.799
SO...
Sampling Year
Drainage
Type
‘75-’91 ‘91-’99 ‘99-’12 ‘75-’12
Above
pH 0.075 0.106 0.204 0.108
Fe 0.867 0.089 0.402 0.799
SO...
0
20
40
60
80
100
120
140
160
180
200
Fe(mg/)
pH SO4Fe
A) B) C)
2.5
3.5
4.5
5.5
6.5
7.5
pH
0.5
1.5
2.5
3.5
4.5
5.5
6.5
197...
Exposure to oxygen and moisture produces Fe2+, SO4, and
acid:
FeS2 + 14Fe3+ + 8H2O  15Fe2+ +2SO4
2- +16H+ (1)
Fe2+ is tra...
0
0.05
0.1
0.15
0.2
0.25
0 20 40 60 80 100 120
Relativefrequency
Dissolved Oxygen (% Saturation)
0
0.05
0.1
0.15
0.2
0.25
...
Below-Drainage Above-Drainage
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0 20 40 60 80 100 120 140
Relativefrequency
A...
0
20
40
60
80
100
120
140
160
180
200
Fe(mg/)
pH SO4Fe
A) B) C)
Above: black
Below: gray
2.5
3.5
4.5
5.5
6.5
7.5
pH
0.5
1....
0
0.5
1
1.5
2
2.5
3
3.5
4
0 1 2 3 4 5 6 7 8
Fe(moles)
S (moles)
Pyrite (2:1)
Samples (2.3:1)
Molar Ratio S:Fe
0
2
4
6
8
10
12
14
16
2 3 4 5 6 7 8 9 10
-LogActivity
pH
0
2
4
6
8
10
12
14
16
2 3 4 5 6 7 8 9 10
-LogActivity
pH
Fe tot 1999
Fe(III)1999
Fe tot 2012
Fe(III)2012
0
2
4
6
8
10
12
14
16
2 3 4 5 6 7 8 9 10
-LogActivity
pH
Fe tot 1999
Fe(III)1999
Fe tot 2012
Fe(III)2012
Goethite
Jarosite...
0
1
2
3
4
5
6
7
8
2 3 4 5 6 7 8 9 10
-LogActivityFe(III)
pH
Jarosite
Schwertmannite
Ferrihydrite
0
1
2
3
4
5
6
7
8
2 3 4 5 6 7 8 9 10
-LogActivity
pH
Fe tot 1999
Fe(III)1999
Fe tot 2012
Fe(III)2012
Jarosite
Schwertmanni...
1 -
.5 -
0 -
-.5 -
Troilite
Ferrihydrite
Jarosite
Schwertmannite
FeSO4 (aq)
Pyrite
Fe++
Fe3+
Fe(OH)++
Fe(OH)2
+
FeOH+
FeOF...
Conclusions
• Differences in pH, Fe, and SO4 were significant
(p<0.05) for below-drainage mines
• Above-drainage discharge...
Thank you!
• EPCAMR
• Earth Conservancy
• PA DEP
• PA GIS and Tax
Assessors Offices
• LU Environmental
Initiative
• LU EES...
References
• Pine Knot Tunnel Discharge image http://www.undergroundminers.com/oakhill.html
• Cravotta, C.A., III, 2008a, ...
Discharges Sampled
• Coalbrook Mine (lower Wilson
Creek Shaft)
• Gravity Slope (Peckville Shaft)
• Old Forge Borehole
• Du...
Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge
Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge
Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge
Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge
Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge
Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge
Upcoming SlideShare
Loading in …5
×

Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge

1,349 views

Published on

Jill Burrows Ph.D. Candidate, Lehigh University, “Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge”

Water samples were collected from 23 Coal Mine Discharges (CMDs) in the summer and fall of 2012 in the anthracite coal region of Pennsylvania to evaluate the changes in geochemistry and hydrology over time by comparing the results to studies conducted on the same discharges in 1975, 1991, and 1999 by the U.S. Geological Survey. Geochemical modeling was used to establish a timeline for inorganic pyrite dissolution.

Published in: Sports, Technology
  • Be the first to comment

  • Be the first to like this

Geochemical and Hydrologic Controls on Abandoned Coal Mine Discharge

  1. 1. Geochemical and Hydrologic Controls on Mine Drainage: Anthracite Coal Fields, PA, 1975-2012 J.E. Burrows1, S.C. Peters1, and C.A. Cravotta, III2 1 Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015 2 USGS, U.S. Geological Survey, Pennsylvania Water Science Center, New Cumberland, PA 17070
  2. 2. Exposure to oxygen and moisture produces Fe2+, SO4, and acid: FeS2 + 14Fe3+ + 8H2O  15Fe2+ +2SO4 2- +16H+ (1)
  3. 3. Fe+3 Ferric Iron Fe+2 Ferrous Iron Aerobic High pH Anaerobic Low pH
  4. 4. Exposure to oxygen and moisture produces Fe2+, SO4, and acid: FeS2 + 14Fe3+ + 8H2O  15Fe2+ +2SO4 2- +16H+ (1) Fe2+ is transformed through the following reactions: Fe2+ + 0.25O2 + H+  Fe3+ + 0.5H2O (2) Fe3+ + 3H2O  Fe(OH)3 + 3H+ (3) Fe2+ + 0.25O2 + 2.5 H2O  Fe(OH)3 + 2H+ (4)
  5. 5. pH Site 2 Site 3 Higher pH results in the precipitation of Fe Lee et al, 2002, Appl. Geochem. Site 1
  6. 6. Wood et al., 1999, Quat. Jour. Eng. Geo.
  7. 7. Wood et al., 1999, Quat. Jour. Eng. Geo.
  8. 8. Scranton Wilkes-Barre Bethlehem Sampling Sites Coal Mining Operations Cities
  9. 9. Scranton Wilkes-Barre Bethlehem Sampling Sites Coal Mining Operations Cities
  10. 10. 1975 1991 1999 2012 Growitz et al., 1985, USGS Report Wood, 1991, USGS Report Cravotta, 2008, Appl. Geochem. This Study
  11. 11. 2.5 3.5 4.5 5.5 6.5 7.5 2/9/99 7/9/99 12/6/99 5/4/00 10/1/00 pH Sampling Date (M/D/Y) pH Askam shaft 2.5 3.5 4.5 5.5 6.5 7.5 pH pH Honey pot Outfall 0 20 40 60 80 100 120 140 160 180 Fe(mg/L) Fe Honeypot outfall 2.5 3.5 4.5 5.5 6.5 7.5 pH pH Valley View 0 50 100 150 Fe(mg/L) Fe Valley View 0 50 100 150 2/9/99 7/9/99 12/6/99 5/4/00 10/1/00 Fe(mg/L) Sampling Date (M/D/Y) Fe Askam shaft
  12. 12. 0 10 20 30 40 50 60 1975 1985 1995 2005 Fe(mg/L) Sampling Year 0 100 200 300 400 500 600 700 1975 1985 1995 2005 SO4(mg/L) Sampling Year pH SO4Fe Median Std Deviation Std Deviation Median Std Deviation Median pH SO4Fe A) B) C) D) E) F) MeanMean Mean 0 500 1000 1500 2000 2500 3000 SO4(mg/L) 0 1 2 3 4 5 6 7 1975 1985 1995 2005 pH Sampling Year 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/L) 2.5 3.5 4.5 5.5 6.5 7.5 pH
  13. 13. 0 10 20 30 40 50 60 1975 1985 1995 2005 Fe(mg/L) Sampling Year 0 100 200 300 400 500 600 700 1975 1985 1995 2005 SO4(mg/L) Sampling Year pH SO4Fe Median Std Deviation Std Deviation Median Std Deviation Median pH SO4Fe A) B) C) D) E) F) MeanMean Mean 0 500 1000 1500 2000 2500 3000 SO4(mg/L) 0 1 2 3 4 5 6 7 1975 1985 1995 2005 pH Sampling Year 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/L) 2.5 3.5 4.5 5.5 6.5 7.5 pH
  14. 14. 0 10 20 30 40 50 60 1975 1985 1995 2005 Fe(mg/L) Sampling Year 0 100 200 300 400 500 600 700 1975 1985 1995 2005 SO4(mg/L) Sampling Year pH SO4Fe Median Std Deviation Std Deviation Median Std Deviation Median pH SO4Fe A) B) C) D) E) F) MeanMean Mean 0 500 1000 1500 2000 2500 3000 SO4(mg/L) 0 1 2 3 4 5 6 7 1975 1985 1995 2005 pH Sampling Year 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/L) 2.5 3.5 4.5 5.5 6.5 7.5 pH
  15. 15. 0 10 20 30 40 50 60 1975 1985 1995 2005 Fe(mg/L) Sampling Year 0 100 200 300 400 500 600 700 1975 1985 1995 2005 SO4(mg/L) Sampling Year pH SO4Fe Median Std Deviation Std Deviation Median Std Deviation Median pH SO4Fe A) B) C) D) E) F) MeanMean Mean 0 500 1000 1500 2000 2500 3000 SO4(mg/L) 0 1 2 3 4 5 6 7 1975 1985 1995 2005 pH Sampling Year 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/L) 2.5 3.5 4.5 5.5 6.5 7.5 pH
  16. 16. Time Interval Parameter ’75-‘91 ’91-‘99 ’99-‘12 ’75-‘12 Fe (mg/L) 0.080 0.005 0.081 0.165 SO4 (mg/L) 0.600 <0.001 0.091 0.002 pH <0.001 <0.001 0.046 0.008 Non-parametric Matched Pairs Significance Level p<0.05
  17. 17. 0 10 20 30 40 50 60 1975 1985 1995 2005 Fe(mg/L) Sampling Year 0 100 200 300 400 500 600 700 1975 1985 1995 2005 SO4(mg/L) Sampling Year pH SO4Fe Median Std Deviation Std Deviation Median Std Deviation Median pH SO4Fe A) B) C) D) E) F) MeanMean Mean 0 500 1000 1500 2000 2500 3000 SO4(mg/L) 0 1 2 3 4 5 6 7 1975 1985 1995 2005 pH Sampling Year 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/L) 2.5 3.5 4.5 5.5 6.5 7.5 pH
  18. 18. EPCAMR John Welsh Flux = Concentration x Discharge
  19. 19. 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 1975 1985 1995 2005 Feflux(mg/s) Sampling Year 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1975 1985 1995 2005 Discharge(m3/s) Sampling Year 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1975 1985 1995 2005 SO4Flux(mg/s) Sampling Year Median Std Deviation Median Median Std Deviation Std Deviation Fe Flux Fe Flux SO4 Flux SO4 FluxDischarge Discharge A) B) C) D) E) F) Mean Mean Mean 0 0.5 1 1.5 2 2.5 3 Discharge(m3/s) 0 0.5 1 1.5 2 2.5 SO4Flux(mg/s) 0 0.05 0.1 0.15 0.2 0.25 FeFlux(mg/s)
  20. 20. Demchak et al., 2004, Jour. Env. Qual.
  21. 21. Above: exposed rock surfaces facilitate O2 transport and continual pyrite dissolution, alkalinity consumption Demchak et al., 2004, Jour. Env. Qual.
  22. 22. Demchak et al., 2004, Jour. Env. Qual. Above: exposed rock surfaces facilitate O2 transport and continual pyrite dissolution, alkalinity consumption Below: groundwater inputs with low dissolved O2, resulting in a decrease of pyrite oxidation
  23. 23. 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/) pH SO4Fe A) B) C) 2.5 3.5 4.5 5.5 6.5 7.5 pH 0.5 1.5 2.5 3.5 4.5 5.5 6.5 1975 1985 1995 2005 pH Sampling Year Mean Std Dev 7 12 17 22 27 32 37 42 47 52 1975 1985 1995 2005 Fe(mg/L) Sampling Year Mean Std Dev Mean 0 100 200 300 400 500 600 700 800 1975 1985 1995 2005 SO4(mg/L) Sampling Year 0 500 1000 1500 2000 2500 3000 SO4(mg/L) Mean Mean Std Dev Above: black Below: gray
  24. 24. Sampling Year Drainage Type ‘75-’91 ‘91-’99 ‘99-’12 ‘75-’12 Above pH 0.075 0.106 0.204 0.108 Fe 0.867 0.089 0.402 0.799 SO4 0.611 0.050 0.866 0.402 Below pH 0.003 0.004 0.099 0.043 Fe 0.045 0.007 0.091 0.028 SO4 0.289 0.009 0.084 0.004 Non-parametric Matched Pairs Significance Level p<0.05
  25. 25. Sampling Year Drainage Type ‘75-’91 ‘91-’99 ‘99-’12 ‘75-’12 Above pH 0.075 0.106 0.204 0.108 Fe 0.867 0.089 0.402 0.799 SO4 0.611 0.050 0.866 0.402 Below pH 0.003 0.004 0.099 0.043 Fe 0.045 0.007 0.091 0.028 SO4 0.289 0.009 0.084 0.004 Non-parametric Matched Pairs Significance Level p<0.05
  26. 26. 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/) pH SO4Fe A) B) C) 2.5 3.5 4.5 5.5 6.5 7.5 pH 0.5 1.5 2.5 3.5 4.5 5.5 6.5 1975 1985 1995 2005 pH Sampling Year Mean Std Dev 7 12 17 22 27 32 37 42 47 52 1975 1985 1995 2005 Fe(mg/L) Sampling Year Mean Std Dev Mean 0 100 200 300 400 500 600 700 800 1975 1985 1995 2005 SO4(mg/L) Sampling Year 0 500 1000 1500 2000 2500 3000 SO4(mg/L) Mean Mean Std Dev Above: black Below: gray
  27. 27. Exposure to oxygen and moisture produces Fe2+, SO4, and acid: FeS2 + 14Fe3+ + 8H2O  15Fe2+ +2SO4 2- +16H+ (1) Fe2+ is transformed through the following reactions: Fe2+ + 0.25O2 + H+  Fe3+ + 0.5H2O (2) Fe3+ + 3H2O  Fe(OH)3 + 3H+ (3) Fe2+ + 0.25O2 + 2.5 H2O  Fe(OH)3 + 2H+ (4)
  28. 28. 0 0.05 0.1 0.15 0.2 0.25 0 20 40 60 80 100 120 Relativefrequency Dissolved Oxygen (% Saturation) 0 0.05 0.1 0.15 0.2 0.25 0 20 40 60 80 100 120 Relativefrequency Dissolved Oxygen (% Saturation) Below-Drainage Above-Drainage
  29. 29. Below-Drainage Above-Drainage 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 20 40 60 80 100 120 140 Relativefrequency Alkalinity (mg/L CaCO3) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 20 40 60 80 100 120 140 Relativefrequency Alkalinity (mg/L CaCO3)
  30. 30. 0 20 40 60 80 100 120 140 160 180 200 Fe(mg/) pH SO4Fe A) B) C) Above: black Below: gray 2.5 3.5 4.5 5.5 6.5 7.5 pH 0.5 1.5 2.5 3.5 4.5 5.5 6.5 1975 1985 1995 2005 pH Sampling Year Mean Std Dev 7 12 17 22 27 32 37 42 47 52 1975 1985 1995 2005 Fe(mg/L) Sampling Year Mean Std Dev Mean 0 100 200 300 400 500 600 700 800 1975 1985 1995 2005 SO4(mg/L) Sampling Year 0 500 1000 1500 2000 2500 3000 SO4(mg/L) Mean Mean Std Dev
  31. 31. 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 5 6 7 8 Fe(moles) S (moles) Pyrite (2:1) Samples (2.3:1) Molar Ratio S:Fe
  32. 32. 0 2 4 6 8 10 12 14 16 2 3 4 5 6 7 8 9 10 -LogActivity pH
  33. 33. 0 2 4 6 8 10 12 14 16 2 3 4 5 6 7 8 9 10 -LogActivity pH Fe tot 1999 Fe(III)1999 Fe tot 2012 Fe(III)2012
  34. 34. 0 2 4 6 8 10 12 14 16 2 3 4 5 6 7 8 9 10 -LogActivity pH Fe tot 1999 Fe(III)1999 Fe tot 2012 Fe(III)2012 Goethite Jarosite Schwertmannite Ferrihydrite
  35. 35. 0 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 -LogActivityFe(III) pH Jarosite Schwertmannite Ferrihydrite
  36. 36. 0 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 -LogActivity pH Fe tot 1999 Fe(III)1999 Fe tot 2012 Fe(III)2012 Jarosite Schwertmannite Ferrihydrite
  37. 37. 1 - .5 - 0 - -.5 - Troilite Ferrihydrite Jarosite Schwertmannite FeSO4 (aq) Pyrite Fe++ Fe3+ Fe(OH)++ Fe(OH)2 + FeOH+ FeOFe++ 2 3 4 5 6 7 8 9 10 pH I I I I I I I Eh(V)
  38. 38. Conclusions • Differences in pH, Fe, and SO4 were significant (p<0.05) for below-drainage mines • Above-drainage discharges did not see any significant changes • Fe(II) is the dominant Fe species, and transformation to Fe(III) may be limited by O2 transport. • Saturation of Fe(III) precipitates varies with pH and Fe and SO4 concentrations: increasing pH and decreasing concentrations of Fe and SO4 limit the precipitation of K-jarosite and schwertmannite and favor precipitation of Fe(III) oxides.
  39. 39. Thank you! • EPCAMR • Earth Conservancy • PA DEP • PA GIS and Tax Assessors Offices • LU Environmental Initiative • LU EES Department • Kayla Virgone • Joe Solly • Kate Semmens • Paul Henry • George Yasko
  40. 40. References • Pine Knot Tunnel Discharge image http://www.undergroundminers.com/oakhill.html • Cravotta, C.A., III, 2008a, Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations, Appl. Geochem., 23, 166-202. • Cravotta, C.A., III, 2008b, Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentration, Appl. Geochem, 23, 203-226. • Lee, G., Bigham, J.M., Faure, G., 2002, Removal of trace metals by coprecipitation with Fe, Al, and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee: Appl. Geochem., 17, 569-581. • Growitz, D.J., Reed, L.A., Bear, M.M., 1985, Reconnaissance of mine drainage in the coal fields of Eastern Pennsylvania, U.S. Geological Society Water-Resources Investigations Report, 83-4274. • Wood, C.R., 1991, Water quality of the large discharges from mines in the anthracite region of Eastern Pennsylvania, U.S. Geological Society Water-Resources Investigations Report, 95-4243. • Wood, S.C., Younger, P.L., Robins, N.S., 1999, Long-term changes in the quality of polluted minewater discharges from abandoned underground coal workings in Scotland, Quat. J. of Eng. Geo., 32, 69-79.
  41. 41. Discharges Sampled • Coalbrook Mine (lower Wilson Creek Shaft) • Gravity Slope (Peckville Shaft) • Old Forge Borehole • Duryea Breech Seep • Butler Mine tunnel (Pittston Water Level Tunnel) • South Wilkes-Barre Boreholes • Buttonwood Outfall • Beaver Meadow Outfall • Oneida Tunnel • Scott Ridge Mine Tunnel • Cameron Mine Airshaft • Cameron Mine Drift • Silverbrook Mine • Colket Mine • Tracy Airhole • Rowe Tunnel Discharge • Valley View Tunnel • Jermyn Mine • Honeypot Outfall • Maysville Mine Borehole at Ranshaw • Henry Clay Stirling Mine Pump • Big Mtn Mine no. 1 Slope • Markson Columnway • Porter Tunnel near Tower City

×