Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

The Virtues of Openness

347 views

Published on

The Virtues of Openness
Policy Futures for Public Education and Science
Creativity, Collaboration & the Commons

Published in: Education
  • Be the first to comment

The Virtues of Openness

  1. 1. The Virtues of Openness Policy Futures for Public Education and Science Creativity, Collaboration & the Commons Michael A. Peters University of Waikato May 13th 2013 4th Annual Conference of the Philosophy of Education Society of Iran (PESI) - 2013
  2. 2. A note of personal thanks My personal thanks to Professor Bakhtiar Shabani Varaki (Ph.D.) Vice-president for Research and Technology , Ferdowsi University of Mashhad, for the invitation to address the 4th Annual Conference of the Philosophy of Education Society of Iran (PESI) – 2013 On a note of collegiality and friendship I do hope that as Editor of Educational Philosophy and Theory I can help with the publication of selected papers.
  3. 3. Virtues of Openness • At the World OER (Open Educational Resources) Congress held at UNESCO, Paris on 20-22 June 2012, the 2012 OER Paris declaration was released. It was prefaced by a series of international statements including various declarations that emphasized the right to education, the protection of literary works and the diversity of cultural expression, global commitment to provide quality basic education, the promotion and use of multilingualism and universal access to cyberspace, and the commitment to an inclusive Information Society “where everyone can create, access, utilize and share information and knowledge.”
  4. 4. The idea of openness • The idea of openness as a political, social, and psychological metaphor has been part of a set of enduring narratives in the West since the time before the flourishing of modern democracy, scientific communication and the rise of the knowledge economy. Principally these narratives have been about the nature of freedom, the primacy of rights to self- expression, the constitution of the public sphere or the “commons”, and the intimate link between openness and creativity. The core philosophical idea concerns openness to experience and interpretation such that a work, language and system permit multiple meanings and interpretations with an accent on the response, imagination and activity of the reader, learner or user.
  5. 5. Open Internet architecture • The Internet is a dynamic changing open ecosystem that progressively changes its nature towards greater computing power, interactivity, inclusiveness, mobility, scale, and peer governance. In this regard and as the overall system develops it begins to approximate the complexity of the architectures of natural ecosystems. The more it develops, one might be led to hypothesize, the greater the likelihood of not merely emulating Earth as a global ecosystem but becoming an integrated organic whole. Open cultures become the necessary condition for the systems as a whole, for the design of open progressive technological improvements and their political, epistemic and ontological foundations.
  6. 6. Digital Culture • The shape of culture as a digital artifact, the formation of a deep ecology of human communication, and the emergence of a new social mode of (peer-to-peer) production, depends on the outcome of this ongoing struggle for openness and the assertion of its logics of global dispersal, distribution, and decentralization. This struggle is many-sided and takes many different forms not only against multinational knowledge capitalism and its expansion of claims to intellectual property into new public and cultural domains but also involves struggles against the surveillance panoptical power of the State and the corporation that threatens to create all-encompassing citizen and customer databases that rest on information- sharing, search algorithms and the compilation of consumer characteristics and behaviors.
  7. 7. COGNITIVE CAPITALISM A context for consideration
  8. 8. Three aspects of cognitive capitalism • Cognitive capitalism is based the increasing informatization of the economy: • digitization of production and increasing formalization and abstraction as long- run historical trend • mathematicization – “algorithmic capitalism” • digitization of language, communication and data sharing • knowledge and learning systems – “knowledge capitalism” • Informatization of biology and biologization of information – “bio-information capitalism”
  9. 9. Cognitive Capitalism
  10. 10. Sketch • Cognitive capitalism - sometimes referred to as 'third capitalism,' after mercantilism and industrial capitalism - is an increasingly significant theory, given its focus on the socio- economic changes caused by Internet and Web 2.0 technologies that have transformed the mode of production and the nature of labor.
  11. 11. Theory of cognitive capitalism • The theory of cognitive capitalism has its origins in French and Italian thinkers, particularly Gilles Deleuze and Felix Guattari'sCapitalism and Schizophrenia, Michel Foucault's work on the birth of biopower and Michael Hardt and Antonio Negri's Empire and Multitude, as well as the Italian Autonomist Marxist movement that had its origins in the Italian operaismo (workerism) of the 1960s.
  12. 12. Socialization of media • the emergence of social media, social networking and social mode of production enhanced by Web 2.0 technologies and distributed knowledge and learning systems • decreasing cost of network access, knowledge-sharing and transmission, and greater ‘borderless’ interconnectedness of knowledge spaces (emergence of ‘world brain’)
  13. 13. ‘immaterial labour’ • Networks and flows of immaterial labor are based on mass participation and collaboration rather than traditional Smithian division of labor that is nonlinear and comprise dynamical systems of labor. • the emergence of team or network as fundamental labor units in a new political economy of peer production (‘Interneting’) based on cooperation and collaboration rather than competition.
  14. 14. The academic economy • The new open communications environment has the power to reshape the university as a networked environment, allowing the emergence of radically decentred forms of social nonproprietarian and nonmarket models of academic production and exchange, alongside market and property forms, that will transform cultural production in general and the concepts of readership, scholarship and authorship that have ruled the academic economy.
  15. 15. THEORY OF THE DIGITAL COMMONS Intellectual sustainability: The ethics of sharing and collaboration
  16. 16. Theory of the commons • Before 1995, few thinkers saw the connection between “information” and “commons” • Mid 1990s saw flourishing of articles in legal reviews on new knowledge commons • Commons became a buzzword for digital information, which was being enclosed, commodified, and overpatented
  17. 17. Some examples • Benkler, Yochai. 1998. “Overcoming Agoraphobia: Building the Commons of the Digitally Networked Environment.” Harvard Journal of Law and Technology 11(2):287–400. • Boyle, James. 2003. “The Second Enclosure Movement and the Construction of the Public Domain.” Law and Contemporary Problems 66(1–2):33–74. http://www.law.duke.edu/journals/66LCPBoyle • Brin, David. 1995. “The Internet as a Commons.” Information Technology and Libraries 14(4):240–242. • David, Paul A. 2000. The Digital Technology Boomerang: New Intellectual Property Rights Threaten Global “Open Science.” Stanford, CA: Department of Economics, Stanford University. http://www- econ.stanford.edu/faculty/workp/swp00016.pdf • Heller, Michael A. 1998. “The Tragedy of the Anticommons: Property in the Transition from Marx to Markets.” Harvard Law Review 111(3):622– 688.
  18. 18. Some distinctions • Shared resource systems—called common-pool resources —are types of economic goods, independent of particular property rights. • Common property on the other hand is a legal regime—a jointly owned legal set of rights • Self-organized commons require strong collective-action and self-governing mechanisms • Social capital refers to the aggregate value of social networks (i.e., who people know), and the inclinations that arise from these networks
  19. 19. “The Tragedy of the Commons” • Hardin, Garrett. 1968. “The Tragedy of the Commons,” Science 162:1243– 1248. • “Ruin is the destination toward which all men rush, each pursuing his own best interest in a society that believes in the freedom of the commons. Freedom in a commons brings ruin to all.”
  20. 20. Inventing the commons Antonio Negri and Judith Revel, 2008 • “Creating value today, is to position subjectivities in networks and to capture, detourn and appropriate the common which they unveil and create.” • “Without the common, capitalism cannot exist. With the common, the possibilities of conflict, resistance and appropriation are infinitely increased. What a beautiful paradox in an age which has finally succeeded in ridding itself of the tatters of Modernity.”
  21. 21. Taking back the common • “In order to re-appropriate our common, above all we need to produce a drastic critique… Our common, is not our fundament, but our production, our invention that continually starts anew. ‘We’: the name of a horizon, the name of a future. The common is always in front of us, it is a process. We are this common: making, producing, participating, moving, sharing, circulating, enriching, inventing, restarting.” • “Today democracy can no longer be thought of but in radically different terms: as common management of the common.”
  22. 22. OPEN SCIENCE ECONOMY OPEN EDUCATION ECONOMY Preliminary sketch
  23. 23. Openness and Knowledge Production • Manifesto for Education in the Age of Cognitive Capitalism: Freedom, Creativity and Culture, Economics, Management, and Financial Markets, 6(1), 2011, pp. 63–92. • Three Forms of Knowledge Economy: Learning, Creativity, Openness, British Journal of Educational Studies, 58 (1), 2010: 67-88. • Creativity, Openness and the Global Knowledge Economy: The Advent of User-generated Cultures, Economics, Management, and Financial Markets, 2011, 5(3).
  24. 24. Openness & Rise of Global Science • On the Philosophy of Open Science, The International Journal of Science in Society, 1 (1), 2009: 1-27. • The Changing Architecture of Global Science, Policy Brief and Occasional Paper (long version), Center for Global Studies, University of Illinois, 2009, at www.cgs.uiuc.edu. • The Rise of Global Science and the Emerging Political Economy of International Research Collaborations, European Journal of Education: Research, development and policies, ‘The European University: between governance, discipline and network’ 41 (2): 225-244. • Open Education and the Open Science Economy, Yearbook of the National Society for the Study of Education, Thomas S. Popkewitz & Fazal Rizvi (Eds.), 2009: 203-225.
  25. 25. Openness and Global Commons • ‘Openness’ and the Global Knowledge Commons: An Emerging Mode of Social Production for Education and Science. In: Hugh Lauder, Michael Young, Harry Daniels, Maria Balarin, John Lowe (Eds.) Educating for the Knowledge Economy? Critical Perspectives. Oxford, Routledge, 2012. • ‘Knowledge Economy,’ Economic Crisis & Cognitive Capitalism: Public Education and the Promise of Open Science. In: David R Cole (Ed.) Surviving Economic Crises through Education, New York, Peter Lang, 2012. • Knowledge Socialism: Intellectual Commons and Openness in the University. In: Ronald Barnett (Ed.) The Future University: Ideas and Possibilities. London, Routledge, 2011.
  26. 26. Open Science Economy Distributed knowledge systems • The open-science economy (OSE) is a rapidly growing sector of the global knowledge economy utilizing open- source models and its multiple applications (e.g. open access, open archiving, open publishing, open repositories) in distributed knowledge and learning systems.
  27. 27. User-generated knowledge production • This rich-text, highly interactive, user- generated OSE has seen linear models of knowledge production give way to more diffuse, open-ended, decentralized, and serendipitous knowledge processes based on open innovation and Web 2 platform technologies.
  28. 28. p2p knowledge systems • Peer-to-peer distributed knowledge systems rival the scope and quality of traditional proprietary products through the diffusion speed and global access of open-source projects, especially in both software and open-source biology.
  29. 29. Non-propertarian • OSE encourages innovation-smart processes based on the radical non- propertarian sharing of content, cloud data computing, and the leveraging of cross-border international exchanges and collaborations.
  30. 30. Social mode of production • OSE encourages a culture of distributed, collaborative, decentralized model of research that is genuinely participatory, involving the wider public and amateur scientists along with experts in the social mode of open knowledge production.
  31. 31. Global science gateways • OSE provides an alternative to the intellectual property approach to dealing with difficult problems in the allocation of resources for the production and distribution of knowledge and information. Increasingly, portal-based knowledge environments and global science gateways support collaborative science.
  32. 32. Open-source informatics & revival of the global public sphere (GPS) • Open-source informatics enables knowledge grids that interconnect science communities, databases, and new computational tools. • Open science is seen as a means for revitalizing public institutions and for developing scientific creativity and innovation at a global level through international collaboration.
  33. 33. THE ERA OF OPEN SCIENCE The beginning
  34. 34. The Era of Open Science
  35. 35. The Web of Science
  36. 36. Purposes of Open Science
  37. 37. Towards open science in the 21st century, 2012 • The grand challenges of the 21st century transcend borders, and science will be increasingly global. A strong commitment to open science by the scientific community, as represented by ALLEA and its Member Academies, and by science funders, like the European Commission, will stimulate science inside and outside of Europe: the emerging Global Knowledge Partnership promises more efficient data-sharing, amplification of observations, replication of experiments, better testing of theories and accelerates innovation. It will enhance transparency and integrity to the scientific enterprise.
  38. 38. A Vision for Open Science in the 21st century • “Powerful digital technologies for data acquisition, storage and manipulation create new opportunities, but also risk widening the “digital divide”. Open Science envisages optimal sharing of research results and tools: publications, data, software, and educational resources. It will rely on advanced e-infrastructures that enable online research collaboration. The potential to link cognate, and to re-use initially unrelated datasets will reveal unexpected relationships and will trigger new dynamics of scientific discovery.”
  39. 39. Open science environments • “The collective intelligence of scientific communities will be unleashed through new collaborations across institutional, disciplinary, sectoral and national boundaries. The open science environments will help restore transparency and integrity to the scientific enterprise, for all to see. New points of exchange with non-academic end-users of scientific knowledge will be created, and progress will be made towards the vision of scientifically literate societies: this may require releasing scientific data in forms that are accessible to citizens.”
  40. 40. Requirements for Open Science • Open Scientific Content arising from publicly funded research • Publications should be made openly available online, as soon and as freely as possible, as should also educational resources and software resulting from publicly funded research. • Open e-Infrastructures for public and private research • High-performance and economically efficient ICT infrastructures are needed to manage the expected scale of future data flows • Towards an Open Science Culture • Academic assessment and reward systems should see merit in participation in the culture of sharing, in enabling online collaboration and reproducible e-science.
  41. 41. "Open Infrastructures for Open Science”, 2012 • The European Commission is drawing up a proposal to open up access to the results of research funded under its proposed €85 billion (US$111 billion) Horizon 2020 research programme. • “there is no reason why subscription access only models should remain dominant for access to research publications in an era when distribution costs approach zero.” • Neelie Kroes, VP of EC, responsible for the Digital Agenda for Europe
  42. 42. The Era of Open Science • “We [are entering] the era of open science. Take ‘Big Data’ analysis. Every year, the scientific community produces data 20 times as large as that held in the US Library of Congress.” • “Open access databases like the European EMBL and the US GenBank double every nine months, and already store over 400 billion DNA bases.
  43. 43. ELEMENTS OF OPEN SCIENCE & OPEN EDUCATION Scientific computing, open journals systems, linked open data
  44. 44. Developments of scientific computing • Cluster supercomputers and high performance storage systems • the invention and analysis of new core algorithms • advanced software development and exploration of new architectures for large- scale computing • New forms of data mining and analysis
  45. 45. Emergence of bioinformatics • Informatization of biology; Biologization of information • “Bio-informational Capitalism”, forthcoming in Thesis Eleven, 2012: • “Organic computing is a form of biologically-inspired computing with organic properties that has emerged for as the future of information processing systems. Networks of intelligent systems can act more independently, flexibly, and autonomously, exhibiting life-like properties that demonstrate propensities for self-organization, self-configuration, self-healing, self- protection and context-awareness.”
  46. 46. Open source based scientific computing 1. Open source software enables researchers to rapidly reproduce the results of computational experiments and explore the behavior of algorithms 2. Open data enables researchers to apply their software to pertinent test cases, and compare competing algorithms. 3. Open Science provides many other benefits including fostering rapid innovation, fair comparison of technology, and providing an ideal resource for educating technologists of the future
  47. 47. OPEN DATA INITIATIVES ARE BECOMING WIDESPREAD Open Access Journals PLoS - An example
  48. 48. Networks of scientific knowledge
  49. 49. PLoS
  50. 50. Nonprofit publisher
  51. 51. Public Library of Science journals • PLoS publishes seven peer-reviewed open-access journals. The journals vary in their selectivity and contain differing amounts of commentary articles from opinion leaders in a variety of scientific disciplines. They include: • PLoS ONE • PLoS Genetics • PLoS Pathogens • PLoS Computational Biology PLoS Neglected Tropical Diseases • PLoS Medicine • PLoS Biology
  52. 52. The Wellcome Trust, 2012 • The Wellcome Trust, one of the world’s largest biomedical charities, will launch its own free online publication to compete with subscription- based journals and enable scientists to make their research findings freely available. • The paradox was that peer review was one of the biggest costs of publishing papers: scientists do it for free and then the fruits of their review work are "locked behind a paywall” -Sir Mark Walport
  53. 53. “The Academic Spring” • Nearly 11,000 researchers who signed up to a boycott of journals that restrict free sharing, initiated by Tim Gowers, the British mathematician. • It is part of a campaign that supporters call the “academic spring”, due to its aim to revolutionise the spread of knowledge.
  54. 54. Open access to academic research • UK Science Minister David Willetts • “Giving people the right to roam freely over publicly funded research will usher in a new era of academic discovery and collaboration, and will put the UK at the forefront of open research.”
  55. 55. OPEN AGGREGATE DATA SITES The new taxonomies and data universes
  56. 56. DATA.GOV
  57. 57. • Linked Data • Linked data is data in which real-world things are given addresses on the web (URIs), and data is published about them in machine-readable formats at those locations. Other datasets can then point to those things using their URIs, which means that people using the data can find out more about something without that information being copied into the original dataset. This page lists the sectors for which we currently publish linked data and some additional resources that will help you to use it. Most sectors have one or more SPARQL endpoints, which enable you to perform searches across the data; you can access these interactively on this site. Reference Reference data covers the central working of government, including organisational structures where these have been made available as RDF. Browse • Visualisation • Government Departments • Other Public Bodies • Ministers • Members of Parliament • Members of the House of Lords • Companies House
  58. 58. The Open Science Project
  59. 59. Data Hub
  60. 60. CKAN (Comprehensive Knowledge Archive Network)
  61. 61. Infochimps
  62. 62. Numbrary free service helps you find, use, and share numbers from public record data sets, like census data
  63. 63. LINKED OPEN DATA LOD & OGD
  64. 64. Linked Open Data • Simple animation to explain what Linked Open Data is and why it's a good thing, both for users and for data providers. To find more information about Europeana's linked data pilot, visit data.europeana.eu. • http://vimeo.com/36752317 • pro.europeana.eu/support-for-open-data
  65. 65. • data.europeana.eu currently contains open metadata on 2.4 million texts, images, videos and sounds gathered by Europeana. These objects come from data providers who have reacted early and positively to Europeana's initiative of promoting more open data and new data exchange agreements
  66. 66. Open Government & Open (Government) Data • The Memorandum on Transparency and Open Government, President Obama 2009 • http://www.whitehouse.gov/the_press_officeTransparencyandOpenGover nment • “My Administration is committed to creating an unprecedented level of openness in Government. We will work together to ensure the public trust and establish a system of transparency, public participation, and collaboration. Openness will strengthen our democracy and promote efficiency and effectiveness in Government.”
  67. 67. Open Government Data (OGD) • Open Government Partnership, 2011 • http://www.opengovpartnership.org • Open Government declaration – 46 gov’ts • Open Government Data (OGD) is seen as a crucial aspect of Open Government • OGD is a worldwide movement to open up government/public administration data, information and content to both human and machine-readable non-proprietary formats for re-use by civil society, economy, media and academia as well as by politicians and public administrators.
  68. 68. OGD principles http://www.opengovdata.org/home/8principles 1. Data must be complete 2. Data must be primary 3. Data must be timely 4. Data must be accessible 5. Data must be machine-processable 6. Access must be non-discriminatory 7. Data formats must be non-proprietary 8. Data must be license-free 9. Permanence – finding information over time 10. Usage costs – de minimus
  69. 69. Significance of Open Data • Digital Agenda for Europe: • http://ec.europa.eu/information_society/digital-agenda • eGovernment Action Plan Europe 2011–2015: • http://ec.europa.eu/information_society/activities/egovernment/action_plan_2011_2015/ Open Data Strategy for Europe: • http://bit.ly/s5FiQo • Open Data Catalogue United States of America: http://data.gov • Open Data Catalogue of Australia: • http://data.gov.au • Open Data Catalogue United Kingdom: • http://data.gov.uk
  70. 70. The Power of Linked Open Data Understanding World Wide Web Consortium’s (W3C) vision of a new web of data • mashing data is time-consuming and costly • Unconnected silos of data • Data is still locked up in applications • metadata and schema information are not separated well from application logics • Data cannot be easily re-used
  71. 71. Evolution of the Web
  72. 72. Linked Open Data Cloud
  73. 73. Open Science Policy Futures? • Linked Open Data (LOD) in disciplinary clusters • Open science in humanities, social sciences, and media studies • Interlinking public/private digital infrastructures • Publishing from LOD • New public enterprise business models
  74. 74. Accessibility, Sustainability, Excellence: How to Expand Access to Research Publications, 19 June 2012 • Report of the Working Group on Expanding Access to Published Research Findings • a “clear policy direction” should be set favouring the so-called “gold” model, in which authors pay upfront to make their papers open access. • No imposition of open-access mandates • concerned not to recommend measures that would “damage high standards of peer review or undermine the very successful publishing industry”
  75. 75. Global Knowledge Communities • Social processes and policies that foster openness as an overriding value characterize global knowledge communities that transcend borders of the nation-state. Openness seems also to suggest political transparency and the norms of open inquiry, indeed, even democracy itself as both the basis of the logic of inquiry and the dissemination of its results. Openness is a value and philosophy that also offers us a means for reinventing our public institutions and transforming our practices.

×