Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Por: Mennys-UTT-SPCspcializados.blogspot.com
Graficas de Control. Es una herramienta estadística que detecta la  variabilidad, consistencia, control y mejora de un  p...
Datos.Datos    1       2       3      4      5      6      7      8      9      10     11     12     13     14     15 16  ...
Calculo de la Desviacion EstandarDatos     1       2       3         4        5        6    7            8       9        ...
Obtencion de limites para las medias ydesviaciones estandar.            Media de las Medias Aritmeticas                   ...
Limites de medias para graficar.                Desviaciones Estandar Reales para Grafico de Medias                       ...
Limites de desviciones para graficar.              Desviaciones Estandar Reales                 Desviacion Estandar       ...
Grafica xr           Limites de control para las medias aritméticasUCL             51.0 Limite Central 44.0 LCL           ...
Grafica xs.    Limites de control para las desviaciones estandarUCL       12.7 Limite Central             7.5 LCL        2...
Upcoming SlideShare
Loading in …5
×

Limites de control para gráficos xr xs

3,555 views

Published on

Ejercicio, elaboracion de graficas xr-xs tomando una muestra de 11 datos por 30 dias.

  • Be the first to comment

  • Be the first to like this

Limites de control para gráficos xr xs

  1. 1. Por: Mennys-UTT-SPCspcializados.blogspot.com
  2. 2. Graficas de Control. Es una herramienta estadística que detecta la variabilidad, consistencia, control y mejora de un proceso. La gráfica de control se usa como una forma de observar, detectar y prevenir el comportamiento del proceso.
  3. 3. Datos.Datos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 X1 43.7 68.0 41.3 41.4 45.1 31.6 36.7 46.7 41.8 46.7 29.3 51.2 43.8 41.4 44.9 36.1 31.7 49.5 38.0 50.4 42.4 36.6 33.8 46.9 44.5 46.8 40.1 59.2 38.9 39.9 X2 45.5 53.6 54.1 50.2 46.0 55.2 45.4 53.6 58.3 34.9 47.9 43.8 37.1 49.4 47.1 34.8 40.8 30.0 35.7 50.5 56.3 30.6 59.2 45.8 37.2 42.9 43.2 49.5 47.3 40.7 X3 47.9 51.1 53.9 33.1 51.7 39.6 43.3 52.5 53.5 39.7 34.6 43.7 33.1 49.0 49.5 23.5 33.2 44.7 42.3 42.3 45.1 41.7 49.1 41.5 47.3 18.4 59.2 53.1 41.5 42.6 X4 36.3 45.0 46.5 40.4 42.9 50.9 50.6 29.7 33.2 49.9 56.6 39.1 51.9 42.2 48.2 42.6 25.4 22.0 41.6 43.6 37.0 44.4 36.7 48.7 47.0 40.4 40.7 38.8 49.2 43.9 X5 43.4 51.2 30.7 50.3 54.6 43.4 47.8 44.8 35.3 54.7 33.5 43.4 47.2 45.9 37.5 30.4 47.3 46.9 38.3 40.1 57.0 49.8 33.2 46.4 47.7 50.8 42.3 41.6 44.8 57.0 X6 44.1 42.8 42.4 48.4 50.9 41.7 47.0 40.9 46.7 50.7 44.1 47.4 27.2 36.0 18.1 45.1 36.8 53.7 39.0 49.5 44.4 39.5 40.9 46.1 60.6 49.8 43.3 43.6 50.1 37.7 X7 30.8 42.6 49.8 27.6 41.2 29.7 51.4 33.1 53.0 46.8 34.9 49.9 54.2 40.2 52.0 42.3 38.7 29.8 45.6 42.5 53.2 45.3 48.3 20.6 30.6 54.6 28.8 51.3 50.0 47.2 X8 47.1 51.8 40.1 56.8 34.6 44.3 35.0 50.4 39.1 29.9 37.0 45.6 34.8 32.7 47.6 53.4 64.8 40.0 44.2 52.9 45.6 28.6 59.2 35.7 50.4 52.9 40.4 55.9 40.1 40.5 X9 30.4 39.1 44.5 50.6 33.2 57.5 43.1 45.2 52.4 48.5 48.7 41.2 39.2 58.7 46.3 43.6 56.3 37.2 44.2 34.3 50.4 37.1 58.1 48.5 32.8 60.4 40.5 49.8 36.2 41.3 X10 42.7 52.9 47.4 48.7 53.9 55.7 52.1 47.0 30.7 40.1 42.2 41.7 41.7 51.4 52.0 32.3 42.1 40.7 56.3 34.3 44.7 52.2 35.3 53.3 42.3 51.5 48.1 45.0 45.4 48.9 X11 37.9 35.1 55.1 40.5 47.9 45.3 48.6 37.1 54.9 42.1 40.8 53.7 34.4 47.3 34.5 51.7 40.0 31.6 38.0 48.8 51.3 39.2 40.7 59.0 60.6 43.7 50.3 47.4 43.6 48.0 ∑ 449.8 533.2 505.8 488.0 502.0 494.9 501.0 481.0 498.9 484.0 449.6 500.7 444.6 494.2 477.7 435.8 457.1 426.1 463.2 489.2 527.4 445.0 494.5 492.5 501.0 512.2 476.9 535.2 487.1 487.7 = 40.9 48.5 46.0 44.4 45.6 45.0 45.5 43.7 45.4 44.0 40.9 45.5 40.4 44.9 43.4 39.6 41.6 38.7 42.1 44.5 47.9 40.5 45.0 44.8 45.5 46.6 43.4 48.7 44.3 44.3 s 5.87 8.5 7.0 8.2 6.9 8.9 5.4 7.4 9.3 7.1 7.7 4.3 7.9 7.0 9.6 8.7 10.7 9.2 5.4 6.2 5.9 7.0 9.8 9.5 9.3 10.5 7.2 5.9 4.5 5.3
  4. 4. Calculo de la Desviacion EstandarDatos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 X1 7.9 381.3 21.9 8.8 0.3 179.3 78.2 8.8 12.6 7.3 133.9 32.3 11.4 12.4 2.2 12.4 97.1 115.9 16.9 35.1 30.8 14.9 124.4 4.5 1.1 0.1 10.6 111.2 29.0 19.7 X2 21.2 26.3 65.9 34.1 0.1 104.2 0.0 97.5 167.6 82.8 49.4 3.0 11.0 20.0 13.5 23.2 0.6 76.3 41.1 36.3 69.8 97.1 202.9 1.1 69.6 13.4 0.0 0.7 9.1 13.2 X3 49.1 6.9 62.7 126.9 36.8 29.1 5.0 77.0 66.3 18.5 39.3 3.3 53.6 16.6 36.9 259.8 69.8 35.6 0.0 4.7 8.1 1.6 17.2 10.7 3.1 793.2 251.1 19.8 7.7 3.0 X4 21.1 12.1 0.3 15.7 7.5 34.9 25.5 196.8 147.7 34.8 247.3 41.2 131.8 7.4 22.8 8.9 261.0 280.1 0.3 0.8 119.8 15.6 68.1 15.4 2.1 38.0 7.0 97.1 24.2 0.2 X5 6.3 7.4 233.5 35.2 80.3 2.5 5.1 1.2 101.1 114.5 54.4 4.5 46.0 0.9 35.1 85.0 33.0 66.6 14.5 19.1 82.0 87.3 138.2 2.6 4.6 17.9 1.1 49.8 0.3 160.4 X6 10.3 32.2 12.8 16.3 27.7 10.8 2.1 8.0 1.8 44.9 10.4 3.5 174.7 79.7 641.5 30.1 22.6 223.9 9.7 25.3 12.6 0.9 16.4 1.8 226.6 10.5 0.0 25.5 33.9 44.0 X7 101.8 34.5 14.6 281.0 19.7 233.8 34.3 112.9 58.5 7.8 35.7 19.2 189.9 22.3 73.5 7.2 8.1 79.9 12.2 3.9 27.6 23.5 11.2 584.3 223.4 64.6 211.8 7.0 32.7 8.2 X8 38.6 11.1 34.6 154.7 121.8 0.5 111.2 44.5 39.1 198.8 15.0 0.0 31.6 149.5 17.4 189.9 540.4 1.6 4.4 71.0 5.5 140.5 202.9 82.3 23.6 40.1 8.7 52.5 17.5 14.7 X9 110.1 87.8 2.2 38.9 154.7 156.5 6.0 2.2 49.6 20.3 61.3 18.6 1.5 189.7 8.3 15.9 217.4 2.4 4.4 103.5 6.0 11.3 172.8 13.9 162.4 191.4 8.1 1.3 65.3 9.2 X10 3.3 19.6 2.0 18.8 68.3 114.7 43.0 10.7 214.8 15.2 1.8 14.6 1.6 41.9 73.5 53.6 0.3 3.9 201.4 103.5 10.5 138.0 93.2 72.7 10.5 24.4 22.5 13.4 1.3 20.8 X11 8.9 178.8 83.1 14.9 5.1 0.1 9.3 43.9 91.1 3.6 0.0 66.9 36.2 5.6 79.7 146.0 2.4 50.9 16.9 18.7 11.3 1.6 18.1 202.4 226.6 8.2 48.2 1.6 0.5 13.4 ∑ 378.6 798.0 533.7 745.3 522.3 866.4 319.8 603.4 950.3 548.5 648.5 207.1 689.4 546.2 1004.3 831.8 1252.7 937.0 321.6 421.9 383.9 532.1 1065.5 991.8 953.8 1201.8 569.3 379.8 221.3 306.9 S2 34.4 72.5 48.5 67.8 47.5 78.8 29.1 54.9 86.4 49.9 59.0 18.8 62.7 49.7 91.3 75.6 113.9 85.2 29.2 38.4 34.9 48.4 96.9 90.2 86.7 109.3 51.8 34.5 20.1 27.9 s 5.867 8.517 6.965345 8.231124 6.890609 8.875037 5.391974 7.406642 9.294609 7.061419 7.678079 4.339421 7.91659 7.046481 9.554922 8.69596 10.67157 9.22943 5.40731 6.19341 5.90783 6.95523 9.842059 9.49537 9.31161 10.4526 7.19424 5.876357 4.4857 5.282092
  5. 5. Obtencion de limites para las medias ydesviaciones estandar. Media de las Medias Aritmeticas A3= 0.927 + 51.0 Limite Superior de Control (UCL) 44.0 Limite Central de Control (CL) 37.1 Limite Inferior de Control (LCL) Media Aritmetica de la Desviaciones Estandar B4= 1.679 12.7 Limite Superior de Control (UCL) 7.5 Limite Central de Control (CL) 2.4 Limite Inferior de Control (LCL) B3= 0.321
  6. 6. Limites de medias para graficar. Desviaciones Estandar Reales para Grafico de Medias Graficar Limites de Control 2.33 Limite Central UCL LCL + 46.38 X Y X Y X Y +2 48.71 1 44.00 1 51.00 1 37.10 41.72 30 44.00 30 51.00 30 37.10 2 39.39 + +2 2 X Y X Y X Y X Y 1 46.38 1 48.71 1 41.72 1 39.39 30 46.38 30 48.71 30 41.72 30 39.39
  7. 7. Limites de desviciones para graficar. Desviaciones Estandar Reales Desviacion Estandar Limite Central UCL LCL 1.71 X Y X Y X Y + 9.24 1 7.5 1 12.70 1 2.40 +2 10.95 30 7.5 30 12.70 30 2.40 5.83 2 4.12 + +2 2 X Y X Y X Y X Y 1 9.24 1 10.95 1 5.83 1 4.12 30 9.24 30 10.95 30 5.83 30 4.12
  8. 8. Grafica xr Limites de control para las medias aritméticasUCL 51.0 Limite Central 44.0 LCL 37.152.0 51.00 51.0050.0 48.71 48.5 48.7 48.71 47.948.0 46.6 46.38 46.0 46.38 45.6 45.5 45.4 45.5 45.546.0 45.0 44.9 45.0 44.8 44.4 44.5 44.3 44.3 44.00 43.7 44.0 44.00 43.4 43.444.0 42.1 41.72 41.6 41.7242.0 40.9 40.9 40.5 40.4 39.39 39.6 39.3940.0 38.738.0 37.10 37.1036.0 0 5 10 15 20 25 30
  9. 9. Grafica xs. Limites de control para las desviaciones estandarUCL 12.7 Limite Central 7.5 LCL 2.414.00 12.70 12.7012.00 10.95 10.7 10.95 10.5 9.6 9.8 9.5 9.24 9.3 9.2 9.3 9.2410.00 8.5 8.9 8.7 8.2 7.9 7.5 7.4 7.7 7.5 8.00 7.0 6.9 7.1 7.0 7.0 7.2 5.873 6.2 5.9 5.9 5.83 5.4 5.4 5.3 6.00 4.3 Nelson rule numero 6:Four (or 4.5 4.12 4.12 4.00 five) out of five points in a row 2.40 2.40 are more than 1 standard 2.00 deviation from the mean in the 0.00 0 5 10 15 20 same direction. 25 30

×