Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Metode cakram

4,215 views

Published on

  • Be the first to comment

Metode cakram

  1. 1. MEDIA PRESENTASI PEMBELAJARANPenggunaan Integral Metode Cakram Matematika SMA/MA Kelas XII IPA Semester 1 y x2 9 PendahuluanVol benda putar sb XVol benda putar sb X
  2. 2. Pendahuluan Metode Cakram Volume Benda Putar Volume Benda Putar Metode cakram yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume mentimun dengan memotong-motongnya sehingga tiap potongan berbentuk cakram. Home Back Next
  3. 3. Pendahuluan Metode Cakram Volume Benda Putar Volume Benda Putar y Bentuk cakram di samping dapat x dianggap sebagai tabung dengan jari-jari r = f(x), tinggi h = x. Sehingga f (x) volumenya dapat diaproksimasi sebagai a x x V r2h atau V f(x)2 x. y Dengan cara jumlahkan, ambil h= x limitnya, dan nyatakan dalam integral diperoleh: r f(x) V f(x)2 x 0 x V = lim f(x)2 x a v [ f (x)]2dx 0 x a Home V y 2dx Back Next 0
  4. 4. Metode Cakram Volume Benda Putar Volume Benda y y y f (x) y f ( x) x f ( y) x f (x) x y x x a y x h= x y r f(x) r x f ( y)0 x h= y y x x a a V y 2 .dx V x 2 .dy Home 0 0 Back Next
  5. 5. Metode Cakram diputar terhadap sumbu X Volume Benda Putar Contoh 1. Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 + 1, sumbu x, sumbu y, garis x = 2 diputar mengelilingi sumbu x sejauh 360º. Jawab y y Langkah penyelesaian: y x2 1 1. Gambarlah daerahnya x h= x 2. Buat sebuah partisi 1 3. Tentukan ukuran dan x2 1 r x2 1 x x bentuk partisi x 2 4. Aproksimasi volume partisi x yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. Home Back Next
  6. 6. Metode Cakram diputar terhadap sumbu X Volume Benda Putar V r2h y V (x2 + 1)2 x V (x2 + 1)2 x h= x a V = lim (x2 + 1)2 x V y 2 .dx r x2 1 2 V (x 2 1 2 dx ) 0 x 0 2 V (x 4 2x 2 1 dx ) x 0 1 x5 2 x3 2 V x 5 3 0 V ( 32 16 2 0) 1311 5 3 15 Home Back Next
  7. 7. Metode Cakram diputar terhadap sumbu Y Volume Benda Putar Contoh 2. Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2, sumbu y, garis y = 2 diputar mengelilingi sumbu y sejauh 360º. Jawab y y x2 Langkah penyelesaian: 2 1. Gambarlah daerahnya y y 2. Buatlah sebuah partisi y 3. Tentukan ukuran dan bentuk x y partisi 4. Aproksimasi volume partisi yang diputar, jumlahkan, ambil r y h= y limitnya, dan nyatakan dalam y bentuk integral. x Home Back Next
  8. 8. Metode Cakram diputar terhadap sumbu Y Volume Benda Putar V r2h V ( y)2 y y V y y a V = lim y y V x 2 .dy 2 2 r y 0 V ydy h= y 0 2 y V ydy 0 x 2 V 1 2 y2 0 V ( 2 4 0) 1 V 2 Home Back Next

×