An Overview of UAV Collision Avoidance Techniques Ben Gardiner, Travis Cooper,  Matthew Haveard, Waseem Ahmad
Outline <ul><li>FAA Regulations regarding Collision Avoidance </li></ul><ul><li>Summary of Algorithms </li></ul><ul><ul><l...
FAA Regulations Regarding Collision Avoidance <ul><li>Reasons for Research </li></ul><ul><ul><li>Combine Systems to mimic ...
Right of Way Rules Vehicles   in Distress > Balloons > Gliders > Everything Else Special Situations
Algorithms Researched <ul><li>Discrete Grid System </li></ul><ul><li>Geometric/Vector Approach </li></ul><ul><li>Mixed Int...
Discrete Grid System Jungtae Kim, Daijin Kim, &quot;New Path Planning Algorithm based on the Visibility Checking using a Q...
Discrete Grid System <ul><li>Divides the space into a graph representation of discrete grid points. </li></ul><ul><li>Each...
Discrete Grid System Ruz, J.J.; Arevalo, O.; Pajares, G.; de la Cruz, J.M.; , &quot;Decision making among alternative rout...
Discrete Grid System <ul><li>Allows for graph algorithms like A* or Dijkstra's Algorithm to find paths. </li></ul><ul><li>...
Discrete Grid System Alejo, D.; Conde, R.; Cobano, J.A.; Ollero, A.; , &quot;Multi-UAV collision avoidance with separation...
Discrete Grid System <ul><li>Possible Problems: </li></ul><ul><li>Square grid is like a roadmap, might not reach every pos...
Vector-Based Tsourdos, A.; , &quot;A formal model approach for the analysis and validation of the cooperative path plannin...
Vector-Based Jung-Woo Park; Hyon-Dong Oh; Min-Jea Tahk; ,  &quot;UAV collision avoidance based on geometric approach,&quot...
Vector-Based Tsourdos, A.; , &quot;A formal model approach for the analysis and validation of the cooperative path plannin...
<ul><li>Simple Concept, Easy to Visualize </li></ul><ul><li>Clear Calculations, potentially easy to program </li></ul><ul>...
Mixed Integer Linear Programming Introduction: What is Mixed Integer Linear Programming? Why is it useful? Applications? E...
<ul><li>Advantages of MILP collision avoidance </li></ul><ul><li>Computational Complexity </li></ul><ul><li>Plan of Implem...
<ul><li>MILP Solver </li></ul><ul><li>Imminent Collision Detection Fail-Safe </li></ul>Plan for Implementation
MILP Collision Avoidance t=0.424192  dt=2
MILP Collision Avoidance t=2.051950  dt=2
MILP Collision Avoidance t=10.783420  dt=2
MILP Collision Avoidance t=72.713  dt=2
MILP Collision Avoidance t=5.5s  dt=6
MILP Collision Avoidance t=1.06  dt=6
MILP Collision Avoidance t=4.899224  dt=6
<ul><li>Use the Information that we have to estimate the path of the UAVs </li></ul><ul><li>Find the “Point of Closest App...
<ul><li>Create a vector based upon: </li></ul><ul><ul><li>Bearing </li></ul></ul><ul><ul><li>Speed </li></ul></ul><ul><ul>...
<ul><li>Use the Haversign Formula:  </li></ul><ul><li>Use approximated radius of the earth: 6371.009 km </li></ul>Collisio...
<ul><li>Find the predicted minimum separation between two UAVs </li></ul><ul><li>If this is less than the threshold distan...
<ul><li>Plan: Implement Mixed Integer Linear Programming </li></ul><ul><li>Possible to add constraints for FAA </li></ul><...
The End
Upcoming SlideShare
Loading in …5
×

5 27pres

565 views

Published on

Week 1 Presentation

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
565
On SlideShare
0
From Embeds
0
Number of Embeds
112
Actions
Shares
0
Downloads
25
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

5 27pres

  1. 1. An Overview of UAV Collision Avoidance Techniques Ben Gardiner, Travis Cooper, Matthew Haveard, Waseem Ahmad
  2. 2. Outline <ul><li>FAA Regulations regarding Collision Avoidance </li></ul><ul><li>Summary of Algorithms </li></ul><ul><ul><li>Discrete Graph Algorithm </li></ul></ul><ul><ul><li>Geometric Vector Algorithms </li></ul></ul><ul><ul><li>Mixed Integer Linear Programming </li></ul></ul><ul><li>Collision Detection using Point of Closest Approach </li></ul><ul><li>Conclusion </li></ul>
  3. 3. FAA Regulations Regarding Collision Avoidance <ul><li>Reasons for Research </li></ul><ul><ul><li>Combine Systems to mimic human capabilities </li></ul></ul><ul><ul><li>Development of more efficient algorithms for UAV autonomy </li></ul></ul><ul><li>Real-World Applications </li></ul><ul><ul><li>Increased UAV usage in Civilian Sectors </li></ul></ul><ul><ul><li>Search and Rescue </li></ul></ul>
  4. 4. Right of Way Rules Vehicles in Distress > Balloons > Gliders > Everything Else Special Situations
  5. 5. Algorithms Researched <ul><li>Discrete Grid System </li></ul><ul><li>Geometric/Vector Approach </li></ul><ul><li>Mixed Integer Linear Programming </li></ul>
  6. 6. Discrete Grid System Jungtae Kim, Daijin Kim, &quot;New Path Planning Algorithm based on the Visibility Checking using a Quad-tree on a Quantized Space, and its improvements,&quot; Accepted to ICROS Korean Journal (in Korean), 2010.
  7. 7. Discrete Grid System <ul><li>Divides the space into a graph representation of discrete grid points. </li></ul><ul><li>Each grid point is connected to the adjacent ones. </li></ul>
  8. 8. Discrete Grid System Ruz, J.J.; Arevalo, O.; Pajares, G.; de la Cruz, J.M.; , &quot;Decision making among alternative routes for UAVs in dynamic environments,&quot; Emerging Technologies and Factory Automation, 2007. ETFA. IEEE Conference on , vol., no., pp.997-1004, 25-28 Sept. 2007 doi: 10.1109/EFTA.2007.4416892 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4416892&isnumber=4416743
  9. 9. Discrete Grid System <ul><li>Allows for graph algorithms like A* or Dijkstra's Algorithm to find paths. </li></ul><ul><li>Clear error zones of n 'cells' in the grid: </li></ul>
  10. 10. Discrete Grid System Alejo, D.; Conde, R.; Cobano, J.A.; Ollero, A.; , &quot;Multi-UAV collision avoidance with separation assurance under uncertainties,&quot; Mechatronics, 2009. ICM 2009. IEEE International Conference on , vol., no., pp.1-6, 14-17 April 2009 doi: 10.1109/ICMECH.2009.4957235 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4957235&isnumber=4957110
  11. 11. Discrete Grid System <ul><li>Possible Problems: </li></ul><ul><li>Square grid is like a roadmap, might not reach every possible destination. </li></ul><ul><li>Square conflict space does not allow well for angles </li></ul><ul><li>Many paths not viable </li></ul>
  12. 12. Vector-Based Tsourdos, A.; , &quot;A formal model approach for the analysis and validation of the cooperative path planning of a UAV team,&quot; Autonomous Agents in Control, 2005. The IEE Seminar on (Ref. No. 2005/10986) , vol., no., pp. 67- 73, 10 May 2005 doi: 10.1049/ic:20050183 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1499807&isnumber=32209
  13. 13. Vector-Based Jung-Woo Park; Hyon-Dong Oh; Min-Jea Tahk; , &quot;UAV collision avoidance based on geometric approach,&quot; SICE Annual Conference, 2008 , vol., no., pp.2122-2126, 20-22 Aug. 2008 doi: 10.1109/SICE.2008.4655013
  14. 14. Vector-Based Tsourdos, A.; , &quot;A formal model approach for the analysis and validation of the cooperative path planning of a UAV team,&quot; Autonomous Agents in Control, 2005. The IEE Seminar on (Ref. No. 2005/10986) , vol., no., pp. 67- 73, 10 May 2005 doi: 10.1049/ic:20050183 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1499807&isnumber=32209
  15. 15. <ul><li>Simple Concept, Easy to Visualize </li></ul><ul><li>Clear Calculations, potentially easy to program </li></ul><ul><li>Calculations rapidly become complex with multiple UAVs </li></ul>Vector-Based Conclusion
  16. 16. Mixed Integer Linear Programming Introduction: What is Mixed Integer Linear Programming? Why is it useful? Applications? Example
  17. 17. <ul><li>Advantages of MILP collision avoidance </li></ul><ul><li>Computational Complexity </li></ul><ul><li>Plan of Implementation </li></ul><ul><li>Techniques to Improve Calculation Efficiency </li></ul>MILP Collision Avoidance
  18. 18. <ul><li>MILP Solver </li></ul><ul><li>Imminent Collision Detection Fail-Safe </li></ul>Plan for Implementation
  19. 19. MILP Collision Avoidance t=0.424192 dt=2
  20. 20. MILP Collision Avoidance t=2.051950 dt=2
  21. 21. MILP Collision Avoidance t=10.783420 dt=2
  22. 22. MILP Collision Avoidance t=72.713 dt=2
  23. 23. MILP Collision Avoidance t=5.5s dt=6
  24. 24. MILP Collision Avoidance t=1.06 dt=6
  25. 25. MILP Collision Avoidance t=4.899224 dt=6
  26. 26. <ul><li>Use the Information that we have to estimate the path of the UAVs </li></ul><ul><li>Find the “Point of Closest Approach” </li></ul><ul><ul><li>Check Separation Distance </li></ul></ul>Collision Detection Introduction
  27. 27. <ul><li>Create a vector based upon: </li></ul><ul><ul><li>Bearing </li></ul></ul><ul><ul><li>Speed </li></ul></ul><ul><ul><li>Possible Turn Angle </li></ul></ul><ul><li>Add To Current Position </li></ul>Collision Detection Method of Estimation
  28. 28. <ul><li>Use the Haversign Formula: </li></ul><ul><li>Use approximated radius of the earth: 6371.009 km </li></ul>Collision Detection Distance Calculation
  29. 29. <ul><li>Find the predicted minimum separation between two UAVs </li></ul><ul><li>If this is less than the threshold distance: </li></ul><ul><ul><li>Report possible collision to avoidance algorithm </li></ul></ul><ul><ul><li>Calculate new intermediate waypoint </li></ul></ul>Collision Detection Point of Closest Approach
  30. 30. <ul><li>Plan: Implement Mixed Integer Linear Programming </li></ul><ul><li>Possible to add constraints for FAA </li></ul><ul><li>Has methods of adapting to additional computation complexity. </li></ul><ul><li>Calculators already exist </li></ul><ul><li>Failsafe: collision detection and avoidance. </li></ul>Conclusion
  31. 31. The End

×