Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Potencias

6,103 views

Published on

  • Be the first to comment

Potencias

  1. 1. POTENCIAS H.L.M. ¿Qué es una Potencia? 1. Potencia de Exponente 0 2. Potencia de Exponente 1 3. Multiplicación de Potencias de Igual Base y Distinto Exponente 4. Multiplicación de Potencias de Distinta Base e Igual Exponente 5. División de Potencias de Igual Base y Distintos Exponentes 6. División de Potencias de Distinta Base e Igual Exponente 7. Potencia de una Potencia 8. Potencia de Exponente Negativo Potencias de Bases 2 y 3. Harold Leiva Miranda Profesor de Matemática
  2. 2. ¿Qué es una Potencia? Potencia es una expresión que consta de una BASE y un EXPONENTE. ¿Qué es una Base y un Exponente? 2 4 BASE EXPONENTE (-5,3) 8 4 a b
  3. 3. ¿Qué significa una Potencia? Potencia es una forma abreviada de escribir una multiplicación recurrente. 2 4 (-5,3) 5 2 = 2 2 2 2    El 2 se multiplica por si mismo las veces que indica el exponente 4. = (-5,3) (-5,3) (-5,3) (-5,3) (-5,3)     =  Ojo: El Exponente 1 no se escribe. Si la base no tiene exponente se asume que es 1. n m = n n … n    n se multiplica por si mismo las veces que indica el exponente m . m veces
  4. 4. Algo importante: <ul><li>Lectura de una Potencia. </li></ul><ul><li>Exponente 2, Cuadrado. Ej. </li></ul><ul><li>Exponente 3, Cubo. Ej. </li></ul><ul><li>En General se puede usar la palabra “ELEVADO A”. </li></ul>Paréntesis en una Potencia. No es lo mismo y
  5. 5. 1 - Propiedad : Potencia de Exponente Cero. 2 0 = 1 2 - Propiedad : Potencia de Exponente Uno. 2 1 = 2 Excepción 0 0 No Existe m 0 = 1 n 1 = n
  6. 6. 3 - Propiedad : Multiplicación de Potencias de Igual Base y Distinto Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 3 4  3 2   3 3 3  3 = 3  4 veces 2 veces En Total son 3   3 3  3  3 3 3  = 3 6 = 3 4+2 6 veces n a  n b = n a+b En General Escribe o di un enunciado que describa la Propiedad
  7. 7. 2 5  2 3 Resuelve usando la Propiedad de Potencia:  2 7 a) =  3  7 b) = 3  5  -6 c) = 2 5  7 3  2 2 d) =  7 2 Ordene     7 5 = = Resultado Final 3 - Propiedad : Multiplicación de Potencias de Igual Base y Distinto Exponente. 2 8
  8. 8. 4 - Propiedad : Multiplicación de Potencias de Distinta Base e Igual Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 5 2  3 2 5 5  = 3  2 veces 2 veces En Total son 3  (5 (5  3) 3)  = 3) 2 = 15 2 2 veces (5   m a  n a = (n • m) a En General Escribe o di un enunciado que describa la Propiedad
  9. 9. 6 6  2 6 Resuelve usando la Propiedad de Potencia:  56 4 a) =  4  4 b) = 3  3  3 c) = 8 4  5 3  7 4 d) =  6 3 Ordene     30 3 = = Resultado Final 4 - Propiedad : Multiplicación de Potencias de Distinta Base e Igual Exponente. 4 4 6
  10. 10. 5 - Propiedad : División de Potencias de Igual Base y Distinto Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 3 4 : 3 2 4 veces ─ = 3 4 3 2 = ______________   3 3 3  3 3  3 2 veces y 3 3 _ = 3 3 _  3 3   = 1 1 3 3    = 3 2 Lo anterior se puede separar así ─ 3 4 - 2 3 2 Más Rápido = 3 = 2 3 4 n a : n b = n a-b En General
  11. 11. 2 5 : 2 3 Resuelve usando la Propiedad de Potencia: a) = b) c) = e) 5 - Propiedad : División de Potencias de Igual Base y Distinto Exponente. 2 8 : d) f)
  12. 12. 6 - Propiedad : División de Potencias de Distintas Bases e Igual Exponente. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 9 4 : 3 4 4 veces ─ = 9 4 3 4 = ______________   9 9 9  9 3  3 4 veces y 9 3 _ = 9 3 _  9 9   = 3 3 3 3    = 3 4 Lo anterior se puede separar así ─ 9 3 4 Más Rápido = 4 3 4 3 3   _ _ 3 3 m a : n a = (m : n) a En General
  13. 13. 5 3 : 10 3 Resuelve usando la Propiedad de Potencia: a) = b) c) = e) 6 - Propiedad : División de Potencias de Distintas Bases e Igual Exponente. 2 3 : d) f)
  14. 14. 7 - Propiedad : Potencia de una Potencia. Sabiendo que: 2 4 = 2 2 2 2    4 veces ¿Cuál será el resultado de? 5 2 ) 6 = 2 •6 = 15 12 5 ( 5 2 5 2 5 2 5 2 5 2 5 2      6 veces 5 5  12 veces 5  5  5  5  5  5  5 5  5  5   = 5 12 (m ) a b = m a • b En General
  15. 15. 7 - Propiedad : Potencia de una Potencia. Resuelve usando Propiedad de Potencia 3 2 ) 3 ( a) 3 ) 1 ( b) 3 ) 2 ( c) 4 9 ) 0 ( d) 2 2 ) 4 ( e) 7 3 ) 4 ( f) 5 ) 2 ( g) -4 ) -3 ( h) = = = = = = = =
  16. 16. 2 - 4 Ejemplos 0,6 - 3 (-7) - 10 - 2 8 - Propiedad : Potencia con Exponente Negativo.
  17. 17. ¿Qué hace la propiedad? 2 - 4 0,6 - 3 = __ 1 2 4 = __ 1 0,6 3 (-5) 4 = ___ 1 - (-5) - 4 7 = 7 __ 3 2 - 2 3 __ 8 - Propiedad : Potencia con Exponente Negativo. En General ó
  18. 18. Así podemos aplicar la propiedad varias veces sobre un mismo número. 7 2 = __ 1 7 -2 7 2 = __ 1 7 -2 = 7 -2 = __ 1 7 2 7 -2 = __ 1 7 2 = 8 - Propiedad : Potencia con Exponente Negativo.
  19. 19. Ejercicios: Cambiar el signo del exponente 8 - Propiedad : Potencia con Exponente Negativo.
  20. 20. Observa lo siguiente 1024 512 256 128 64 32 16 8 4 2 1 4 16 5 32 6 64
  21. 21. Observa lo siguiente 59049 19683 6561 2187 729 243 81 27 9 3 1 4 81 5 243 6 729
  22. 22. Curiosidades 1) De los números naturales, excluidos el 1, son el 8 y el 27 los únicos cuyo cubo da exactamente dígitos que suman 8 y 27, respectivamente. 2) El número de días del año (365) es igual a la suma de los cuadrados de tres números naturales consecutivos. Y de dos números consecutivos 3)
  23. 23. LINKS http://www.vitanet.cl/busqueda/buscar.php?materia=MATEMATICAS+-+PROBLEMAS,+EJERCICIOS,+ETC http://www.elprisma.com/apuntes/curso.asp?id=7169 http://webpages.ull.es/users/imarrero/sctm04/modulo2/3/mdeleon.pdf http://www.comenius.usach.cl/webmat2/conceptos/desarrolloconcepto/potencias_desarrollo.htm http://w3.cnice.mec.es/eos/MaterialesEducativos/primaria/matematicas/conmates/unid-5/potencias.htm http://descartes.cnice.mecd.es/1y2_eso/potencia/index.htm http://platea.pntic.mec.es/anunezca/Potencias/POTENCIAS.htm http://lubrin.org/mat/spip.php?rubrique52
  24. 24. POTENCIAS H.L.M. Harold Leiva Miranda [email_address] Colegio Sek – Pacífico Con - Con

×