Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
VIBRACIONES
Presenta: Dr. Ing. Ángel Francisco Villalpando Reyna
Ingeniería Mecatronica
Tema 1. Unidad 1 C
Constante de resorte asociada con la fuerza de restauración
producida por la gravedad
En algunas aplicaciones se desarroll...
Constante de resorte asociada con una fuerza de restauración
producida por la gravedad
La figura 1.34 muestra un péndulo s...
Para desplazamientos angulares pequeños q,
sen q se puede aproximar como sen q  q y
la ecuación (E.1) se escribe como
T =...
Elementos de masa o inercia
Se supone que el elemento de masa o inercia es un cuerpo rígido que
puede ganar o perder energ...
Por ejemplo, consideremos de nuevo la viga en voladizo con una masa en
el extremo de la figura 1.25(a). Para un rápido y r...
La masa m representa el elemento de masa, y la
elasticidad de la viga indica la rigidez del resorte.
Luego consideramos un...
Caso 1. Masas traslacionales conectadas por una barra rígida. Consideremos las
masas fijas en una barra rígida pivotada en...
Para ser específicos, supongamos que la ubicación de la masa equivalente es la de la
masa m1. Las velocidades de las masas...
Caso 2: Masas traslacionales y rotacionales acopladas. Sea una masa m que rota a
una velocidad x acoplada a otra masa (de ...
Estas dos masas se pueden combinar para obtener o (1) una sola masa
traslacional equivalente meq, o (2) una sola masa rota...
Dado que x eq = x y q = x /R, la equivalencia de T y Teq da
2. Masa rotacional equivalente. En este caso qeq = q
y x = qR, y la equivalencia de T y Teq conduce
Ejemplo 1.12 Mecanismo seguidor de leva
Un mecanismo seguidor de leva (figura 1.39) se utiliza para convertir el
movimient...
Solución: La masa equivalente del sistema
seguidor de leva se determina por medio de
la equivalencia de las energías cinét...
Elementos de amortiguamiento
En muchos sistemas prácticos, la energía vibratoria se convierte
gradualmente en calor o soni...
Se supone que un amortiguador no tiene masa ni elasticidad, y que la
fuerza de amortiguamiento existe sólo si hay una velo...
Amortiguamiento viscoso. El amortiguamiento viscoso es el mecanismo
de amortiguamiento de mayor uso en el análisis de vibr...
Entre los ejemplos típicos de amortiguamiento viscoso están: (1) la
película de fluido entre superficies deslizantes; (2) ...
Amortiguamiento de Coulomb o de fricción en seco.
Aquí la fuerza de amortiguamiento es de magnitud constante pero de
direc...
Amortiguamiento debido a un material o sólido o histético.
Cuando un material se deforma, absorbe o disipa energía [1.31]....
Cuando la carga aplicada a un cuerpo elástico se incrementa, el esfuerzo (s) y la
deformación (e) en el cuerpo también se ...
Ejemplo 1.13 Constante de amortiguamiento de placas paralelas
separadas por un fluido viscoso
Considere dos placas paralel...
Solución: Sean una placa fija y la otra móvil con una velocidad v en su propio
plano. Las capas de fluido en contacto con ...
donde
𝑑𝑢
𝑑𝑥
=
𝑣
ℎ
es el gradiente de velocidad. La fuerza cortante o
resistente (F) desarrollada en la superficien inferio...
la constante c de amortiguamiento se encuentra como
Ejemplo 1.14 Holgura en un cojinete
Un cojinete, el cual se puede representar de forma aproximada como
dos placas separada...
Solución: Como la fuerza resistente se expresa como F = cv, donde c es la
constante de amortiguamiento y v es la velocidad...
Ejemplo 1.15 Constante de amortiguamiento de una chumacera
Se utiliza una chumacera como soporte
lateral de una flecha rot...
El producto del gradiente de velocidad radial y la viscosidad del
lubricante proporcionan el esfuerzo cortante (t) en el l...
donde A = 2pRI es el área de la flecha expuesta al lubricante.
Por lo tanto la ecuación (E.3) se reescribe como
De acuerdo...
obtenemos la expresión deseada para la constante de
amortiguamiento rotacional como
Nota: La ecuación (E.5) se conoce como...
Linealización de un amortiguador no lineal
Si la relación fuerza (F) - velocidad (v) de un amortiguador es
no lineal:
se p...
Combinación de amortiguadores
En algunos sistemas dinámicos se utilizan varios amortiguadores. En esos casos, todos
los am...
Ejemplo 1.17 Constantes de resorte y amortiguamiento
equivalentes de un soporte de máquina herramienta
Una máquina fresado...
Solución: En la figura 1.45(c) se muestran los diagramas de cuerpo libre de los cuatro
resortes y los cuatro amortiguadore...
donde Fs + Fd = W, con W que indica la fuerza vertical total (incluida
la fuerza de inercia) que actúa en la fresadora. De...
Movimiento armónico
El movimiento oscilatorio puede repetirse con regularidad, como en el
caso de un péndulo simple, o des...
En este sistema, una manivela de radio A gira alrededor del punto O. El
otro extremo de la manivela, P, se desliza en una ...
Este movimiento se muestra por medio de la curva senoidal en la figura
1.46. La velocidad de la masa m en el instante t la...
Este movimiento se muestra por medio de la curva senoidal en la figura
1.46. La velocidad de la masa m en el instante t la...
Se ve que la aceleración es directamente proporcional al desplazamiento.
Una vibración como esa, con la aceleración propor...
y su proyección sobre el eje horizontal por
Como se vio antes, el método vectorial de representar el
movimiento armónico r...
donde i = √-1 , y a y b indican los componentes x y y de X
, respectivamente (vea la figura 1.48). Los componentes a y b
t...
Vibraciones unidad 1 c [autoguardado]
Vibraciones unidad 1 c [autoguardado]
Vibraciones unidad 1 c [autoguardado]
Upcoming SlideShare
Loading in …5
×

Vibraciones unidad 1 c [autoguardado]

2,645 views

Published on

Tercera semana

Published in: Education
  • Be the first to comment

Vibraciones unidad 1 c [autoguardado]

  1. 1. VIBRACIONES Presenta: Dr. Ing. Ángel Francisco Villalpando Reyna Ingeniería Mecatronica Tema 1. Unidad 1 C
  2. 2. Constante de resorte asociada con la fuerza de restauración producida por la gravedad En algunas aplicaciones se desarrolla una fuerza o momento de restauración producido por la gravedad cuando una masa experimenta un desplazamiento. En esos casos se puede asociar una constante de resorte equivalente con la fuerza o momento de restauración de la gravedad. El siguiente ejemplo ilustra el procedimiento.
  3. 3. Constante de resorte asociada con una fuerza de restauración producida por la gravedad La figura 1.34 muestra un péndulo simple de longitud l con una lenteja de masa m. Considerando un desplazamiento angular u del péndulo, determine la constante de resorte asociada con la fuerza (o momento) de restauración. Solución: Cuando el péndulo se somete a un desplazamiento angular q, la masa m se mueve a una distancia l sen q a lo largo de la dirección horizontal (x). El momento o par de restauración (T) creado por el peso de la masa (mg) con respecto al pivote O está dado por T = mg(l sen q )
  4. 4. Para desplazamientos angulares pequeños q, sen q se puede aproximar como sen q  q y la ecuación (E.1) se escribe como T = mgl q (E.2) Si expresamos la ecuación (E.2) como T = kt q (E.3) la constante de resorte torsional equivalente deseada kt se puede identificar como kt = mgl (E.4)
  5. 5. Elementos de masa o inercia Se supone que el elemento de masa o inercia es un cuerpo rígido que puede ganar o perder energía cinética siempre que cambia su velocidad. De acuerdo con la segunda ley del movimiento de Newton, el producto de la masa y su aceleración son iguales a la fuerza aplicada a la masa. El trabajo es igual a la fuerza multiplicada por el desplazamiento en la dirección de la fuerza, y el trabajo realizado en una masa se almacena como energía cinética. En la mayoría de los casos se tiene que utilizar un modelo matemático para representar el sistema vibratorio real, y a menudo hay varios modelos posibles. El propósito del análisis suele determinar cuál modelo matemático es el adecuado.
  6. 6. Por ejemplo, consideremos de nuevo la viga en voladizo con una masa en el extremo de la figura 1.25(a). Para un rápido y razonablemente preciso análisis, se desechan la masa y el amortiguamiento de la viga; el sistema se puede modelar como un sistema de resorte y masa, como se muestra en la figura 1.25(b).
  7. 7. La masa m representa el elemento de masa, y la elasticidad de la viga indica la rigidez del resorte. Luego consideramos un edificio de varios pisos sometido a un sismo. Suponiendo que la masa de la estructura es insignificante comparada con las de las masas de los pisos, el edificio se modela como un sistema de varios grados de libertad, como se muestra en la figura 1.35. Las masas en los diversos pisos representan los elementos de masa, y las elasticidades de los miembros verticales indican los elementos de resorte.
  8. 8. Caso 1. Masas traslacionales conectadas por una barra rígida. Consideremos las masas fijas en una barra rígida pivotada en un extremo, como se muestra en la figura 1.36(a). Se puede suponer que la masa equivalente está localizada en cualquier punto a lo largo de la barra
  9. 9. Para ser específicos, supongamos que la ubicación de la masa equivalente es la de la masa m1. Las velocidades de las masas m2(x2) y m3(x3) se pueden expresar en función de la velocidad de la masa m1(x1), suponiendo pequeños desplazamientos angulares de la barra, como
  10. 10. Caso 2: Masas traslacionales y rotacionales acopladas. Sea una masa m que rota a una velocidad x acoplada a otra masa (de momento de inercia de masa, J0) que rota a una velocidad q, como en el sistema de cremallera y piñón que se muestra en la figura 1.37.
  11. 11. Estas dos masas se pueden combinar para obtener o (1) una sola masa traslacional equivalente meq, o (2) una sola masa rotacional equivalente Jeq, como se muestra a continuación. 1. Masa traslacional equivalente. La energía cinética de las dos masas está dada por y la energía cinética de la masa equivalente se expresa como
  12. 12. Dado que x eq = x y q = x /R, la equivalencia de T y Teq da
  13. 13. 2. Masa rotacional equivalente. En este caso qeq = q y x = qR, y la equivalencia de T y Teq conduce
  14. 14. Ejemplo 1.12 Mecanismo seguidor de leva Un mecanismo seguidor de leva (figura 1.39) se utiliza para convertir el movimiento rotatorio de un cigüeñal en el movimiento oscilante o reciprocante de una válvula. El sistema seguidor se compone de una varilla de empuje de masa mp, un balancín de masa mr, un momento de inercia de masa Jr con respecto a su C.G., una válvula de masa mv, y un resorte de válvula de masa insignificante [1.28-1.30]. Encuentre la masa equivalente (meq) de este sistema seguidor de leva suponiendo la ubicación de meq como (i) punto A e (ii) punto C.
  15. 15. Solución: La masa equivalente del sistema seguidor de leva se determina por medio de la equivalencia de las energías cinéticas de los dos sistemas. Debido a un desplazamiento vertical x de la varilla de empuje, el balancín gira un ángulo qr = x/l1 alrededor del pivote, la válvula desciende una distancia xv = qr l2 = xl2/l1 y el C.G. del balancín desciende una distancia xr = qr l3 = xl3/l1. La energía cinética del sistema (T) se expresa como
  16. 16. Elementos de amortiguamiento En muchos sistemas prácticos, la energía vibratoria se convierte gradualmente en calor o sonido. Debido a la reducción de energía, la respuesta, como el desplazamiento del sistema, se reduce gradualmente. El mecanismo mediante el cual la energía vibratoria se convierte gradualmente en calor o sonido se conoce como amortiguamiento. Aun cuando la cantidad de energía convertida en calor o en sonido es relativamente pequeña, la consideración del amortiguamiento llega a ser importante para predecir con exactitud la respuesta a la vibración de un sistema.
  17. 17. Se supone que un amortiguador no tiene masa ni elasticidad, y que la fuerza de amortiguamiento existe sólo si hay una velocidad relativa entre los dos extremos del amortiguador. Es difícil determinar las causas del amortiguamiento en sistemas prácticos. Por consiguiente, el amortiguamiento se modela como uno más de los siguientes tipos.
  18. 18. Amortiguamiento viscoso. El amortiguamiento viscoso es el mecanismo de amortiguamiento de mayor uso en el análisis de vibración. Cuando un sistema mecánico vibra en un medio fluido como aire, gas, agua o aceite, la resistencia ofrecida por el fluido en el cuerpo en movimiento hace que se disipe la energía. En este caso, la cantidad de energía disipada depende de muchos factores, como el tamaño y forma del cuerpo vibratorio, la viscosidad del fluido, la frecuencia de vibración e incluso la velocidad del cuerpo vibratorio. En el amortiguamiento viscoso, la fuerza de amortiguamiento es proporcional a la velocidad del cuerpo vibratorio.
  19. 19. Entre los ejemplos típicos de amortiguamiento viscoso están: (1) la película de fluido entre superficies deslizantes; (2) el flujo de fluido alrededor de un pistón en un cilindro; (3) el flujo de fluido a través de un orificio, y (4) la película de fluido alrededor de un muñón en una chumacera.
  20. 20. Amortiguamiento de Coulomb o de fricción en seco. Aquí la fuerza de amortiguamiento es de magnitud constante pero de dirección opuesta a la del movimiento del cuerpo vibratorio. Es resultado de la fricción entre superficies que al frotarse están secas o no tienen una lubricación suficiente.
  21. 21. Amortiguamiento debido a un material o sólido o histético. Cuando un material se deforma, absorbe o disipa energía [1.31]. El efecto se debe a la fricción entre los planos internos, los cuales se resbalan o deslizan a medida que ocurren las deformaciones. Cuando un cuerpo que experimenta amortiguamiento producido por el material se somete a vibración, el diagrama de esfuerzo-deformación muestra un bucle de histéresis como se indica en la figura 1.40(a). El área de este bucle indica la pérdida de energía por unidad de volumen del cuerpo por ciclo debido al amortiguamiento.
  22. 22. Cuando la carga aplicada a un cuerpo elástico se incrementa, el esfuerzo (s) y la deformación (e) en el cuerpo también se incrementan. El área bajo la curva s-e, dada por
  23. 23. Ejemplo 1.13 Constante de amortiguamiento de placas paralelas separadas por un fluido viscoso Considere dos placas paralelas separadas una distancia h, con un fluido de viscosidad m entre ellas. Derive una expresión para la constante de amortiguamiento cuando una placa se mueve con una velocidad v con respecto a la otra como se muestra en la figura 1.41.
  24. 24. Solución: Sean una placa fija y la otra móvil con una velocidad v en su propio plano. Las capas de fluido en contacto con la placa móvil se mueven con una velocidad v, en tanto que las que están en contacto con la placa fija no se mueven. Se supone que las velocidades de las capas de fluido intermedias varían linealmente entre 0 y v, como se muestra en la figura 1.41. De acuerdo con la ley de flujo viscoso de Newton, el esfuerzo cortante (t) desarrollado en la capa de fluido a una distancia y de la placa fija está dado por
  25. 25. donde 𝑑𝑢 𝑑𝑥 = 𝑣 ℎ es el gradiente de velocidad. La fuerza cortante o resistente (F) desarrollada en la superficien inferior de la placa móvil es donde A es el área de la placa móvil. Expresando F como
  26. 26. la constante c de amortiguamiento se encuentra como
  27. 27. Ejemplo 1.14 Holgura en un cojinete Un cojinete, el cual se puede representar de forma aproximada como dos placas separadas por una delgada película de lubricante (figura 1.42), ofrece una resistencia de 400 N cuando se utiliza aceite SAE 30 como lubricante y la velocidad relativa entre las placas es de 10 m/s. Si el área de las placas es de 0.1 m2, determine la holgura entre las placas. Suponga que la viscosidad absoluta del aceite SAE 30 es 50 mreyn o 0.3445 Pa-s.
  28. 28. Solución: Como la fuerza resistente se expresa como F = cv, donde c es la constante de amortiguamiento y v es la velocidad, tenemos Si el cojinete se modela como un amortiguador de placas planas, la ecuación (E.4) del ejemplo 1.13 da la constante de amortiguamiento: Utilizando los datos, la ecuación (E.2) da por resultado
  29. 29. Ejemplo 1.15 Constante de amortiguamiento de una chumacera Se utiliza una chumacera como soporte lateral de una flecha rotatoria como se muestra en la figura 1.43. Si el radio de la flecha es R, su velocidad angular es v, la holgura radial entre la flecha y el cojinete es d, la viscosidad del fluido (lubricante) es m, y la longitud del cojinete es l, obtenga una expresión para la constante de amortiguamiento rotacional de la chumacera. Suponga que la fuga de fluido es insignificante.
  30. 30. El producto del gradiente de velocidad radial y la viscosidad del lubricante proporcionan el esfuerzo cortante (t) en el lubricante: La fuerza requerida para cortar la película de fluido es igual al esfuerzo por el área. El par de torsión en la flecha (T) es igual a la fuerza por el brazo de palanca, de modo que
  31. 31. donde A = 2pRI es el área de la flecha expuesta al lubricante. Por lo tanto la ecuación (E.3) se reescribe como De acuerdo con la definición de la constante de amortiguamiento rotacional del cojinete (ct):
  32. 32. obtenemos la expresión deseada para la constante de amortiguamiento rotacional como Nota: La ecuación (E.5) se conoce como ley de Petroff y originalmente se publicó en 1883. Esta ecuación se utiliza ampliamente en el diseño de chumaceras [1.43].
  33. 33. Linealización de un amortiguador no lineal Si la relación fuerza (F) - velocidad (v) de un amortiguador es no lineal: se puede utilizar un proceso de linealización alrededor de la velocidad de operación (v*) como en el caso de un resorte no lineal. El proceso de linealización proporciona la constante de amortiguamiento equivalente como
  34. 34. Combinación de amortiguadores En algunos sistemas dinámicos se utilizan varios amortiguadores. En esos casos, todos los amortiguadores se reemplazan con un amortiguador único equivalente. Cuando los amortiguadores aparecen combinados, podemos utilizar procedimientos semejantes a los que utilizamos para determinar la constante de resorte equivalente de varios resortes con el objetivo de determinar un amortiguador único equivalente. Por ejemplo, cuando dos amortiguadores traslacionales, con constantes de amortiguamiento c1 y c2 aparecen combinados, la constante de amortiguamiento equivalente (ceq) se puede hallar como
  35. 35. Ejemplo 1.17 Constantes de resorte y amortiguamiento equivalentes de un soporte de máquina herramienta Una máquina fresadora de precisión está montada sobre cuatro soportes antivibratorios, como se muestra en la figura 1.45(a). La elasticidad y amortiguamiento de cada soporte antivibratorio se modela como un resorte y un amortiguador viscoso, como se muestra en la figura 1.45(b). Encuentre la constante de resorte equivalente, keq, y la constante de amortiguamiento equivalente, ceq, del soporte de la máquina herramienta en función de las constantes de resorte (ki) y las constantes de amortiguamiento (ci) de los soportes de montaje.
  36. 36. Solución: En la figura 1.45(c) se muestran los diagramas de cuerpo libre de los cuatro resortes y los cuatro amortiguadores. Suponiendo que el centro de masa, G, esté localizado simétricamente con respecto a los cuatro resortes y amortiguadores, observamos que los resortes experimentarán el mismo desplazamiento, x, y que los amortiguadores tendrán la misma velocidad relativa ẋ , donde x y ẋ indican el desplazamiento y la velocidad, respectivamente, del centro de masa, G. Por consiguiente, las fuerzas que actúan en los resortes (Fsi) y los amortiguadores (Fdi) se expresan como Sean Fs y Fd las fuerzas totales que actúan en todos los resortes y todos los amortiguadores, respectivamente (vea la figura 1.45(d)). Por lo tanto, las ecuaciones de equilibrio de fuerzas se expresan como
  37. 37. donde Fs + Fd = W, con W que indica la fuerza vertical total (incluida la fuerza de inercia) que actúa en la fresadora. De acuerdo con la ecuación 1.45(d), tenemos La ecuación (E.2), junto con las ecuaciones (E.1) y (E.3) da por resultado
  38. 38. Movimiento armónico El movimiento oscilatorio puede repetirse con regularidad, como en el caso de un péndulo simple, o desplegar una irregularidad considerable, como en el caso del movimiento de la tierra en un sismo. Si el movimiento se repite después de intervalos de tiempo iguales, se llama movimiento periódico. El tipo más simple de movimiento periódico es el movimiento armónico. El movimiento impartido a la masa m por el mecanismo de yugo escocés que se muestra en la figura 1.46 es un ejemplo de movimiento armónico simple [1.24, 1.34, 1.35].
  39. 39. En este sistema, una manivela de radio A gira alrededor del punto O. El otro extremo de la manivela, P, se desliza en una barra ranurada, la cual se mueve con un movimiento de vaivén en la guía vertical R. Cuando la manivela gira a una velocidad angular v, el extremo S del eslabón ranurado y por consiguiente la masa m del sistema de resorte y masa, se desplazan de sus posiciones medias una distancia x (en el tiempo t) dada por
  40. 40. Este movimiento se muestra por medio de la curva senoidal en la figura 1.46. La velocidad de la masa m en el instante t la da y la aceleración
  41. 41. Este movimiento se muestra por medio de la curva senoidal en la figura 1.46. La velocidad de la masa m en el instante t la da y la aceleración
  42. 42. Se ve que la aceleración es directamente proporcional al desplazamiento. Una vibración como esa, con la aceleración proporcional al desplazamiento y dirigida hacia la posición media, se conoce como movimiento armónico simple. El movimiento dado por x = A cos vt es otro ejemplo de movimiento armónico simple. La figura 1.46 muestra con claridad la semejanza entre el movimiento(armónico) cíclico y el movimiento sinodal.
  43. 43. y su proyección sobre el eje horizontal por Como se vio antes, el método vectorial de representar el movimiento armónico requiere la descripción de los componentes horizontales y de los verticales. Es más práctico representar el movimiento armónico por medio de números complejos. Cualquier vector X: en el plano xy se puede representar como un número complejo:
  44. 44. donde i = √-1 , y a y b indican los componentes x y y de X , respectivamente (vea la figura 1.48). Los componentes a y b también se conocen como partes real e imaginaria del vector X. Si A indica el módulo o valor absoluto del vector X , y q representa el argumento o ángulo entre el vector y el eje x, entonces X también puede expresarse como

×