Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

LabRoots 2019: Molecular Manipulation

693 views

Published on

Presenting our research on molecular changes in flower and extract. A visual guide through the production pipeline. With added data sets for better insight.

Published in: Science
  • Be the first to comment

  • Be the first to like this

LabRoots 2019: Molecular Manipulation

  1. 1. Controlling Terpenes and Cannabinoids in Flower and Extract Cannabis Curing & Extraction Research by Dr. Markus Roggen Complex Biotech Discovery Ventures
  2. 2. Agenda • Introduction • Data Visualization • Different Strains = Different Chemovars • Drying & Storage • Drying Conditions • Gasses for Storage • Extraction • Particle Size • DoE • Post-Processing • Decarboxylation
  3. 3. Cannabis Processing Pipeline • Drying and curing • Extraction • Post processing CBDA CBD THCA THC
  4. 4. Cannabis Processing Pipeline • Drying and curing • Extraction • Post processing Myrcene a-Pinene b-Pinene Limonene b-Caryophyllene
  5. 5. Cannabis Flower and Medicine • Cannabinoid ratios and concentrations show little variability • Terpene ratios and concentrations show strong variability Cannabinoid Chemotaxonomy: DOI:10.1038/s41598-018-31120-2 Terpene Chemovars: DOI: 10.1089/can.2016.0040 Gorilla Glue Sour Diesel Cookies Sour Tangie Lemonade Haze
  6. 6. What is in the Plant 6 >140 Cannabinoids >200 Terpenes ~30 Flavonoids Alcohols, Phenols Aldehydes, Ketones Alkaloids Carbohydrates, Fatty Acids Lactones
  7. 7. Drying and Curing • Drying room conditions influence on terpenes 30% Drying Conditions Slower Faster Air Vacuum N2 Ar Long Term Storage 20% CO2 Storage Atmosphere
  8. 8. Water Activity during Dry and Cure 0.45 0.55 0.65 0.75 0.85 0.95 0 5 10 15 20 25 30 WaterActivity Day Water Activity Aw of 0.65 represents the value in which Botrytis cannot continue to grow Terpene Content (% dry weight) Rapid Dry Slow Dry Lemonade Haze 1.42 1.82 Sour Tangie 1.69 2.2 • Moisture loss is driven by a difference in vapor pressure • Balance between inhibiting mold growth and terpene loss
  9. 9. Drying and Curing • Drying room conditions influence on terpenes • Storage time influences on cannabinoids • Drying room conditions influence on terpenes • Storage time influences on cannabinoids • Curing Gases influence on terpene ratios 30% Drying Conditions Slower Faster Air Vacuum N2 Ar Long Term Storage 20% CO2 Storage Atmosphere
  10. 10. Drying and Curing • Drying room conditions influence on terpenes • Storage time influences on cannabinoids • Curing Gases influence on terpene ratios 30% Drying Conditions Slower Faster Air Vacuum N2 Ar Long Term Storage 20% CO2 Storage Atmosphere
  11. 11. Storing under Modified Atmosphere 18.00 20.00 22.00 24.00 26.00 28.00 30.00 0 2 4 6 8 10 12 14 16 w% Weeks Cannabinoids Air Vacuum N2 Ar CO2 0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 12 14 16 18 w% Weeks Total Terpens Air Vacuum N2 Ar CO2
  12. 12. Extraction • Particle size effects yield and precision 2mm Milling Method Whole Flower Food Blender Extraction Method Terpenes THC THCA CBDA
  13. 13. Extraction • Particle size effects yield and precision 2mm Terpenes THC THCA CBDA Whole Flower Food Blender Milling Method
  14. 14. Effect of Milling Does milling destroy THC? 0% 1% 2% %decarb by Size 0 0.2 0.4 0.6 0.8 1 1.2 1.4 %wt. Terpenes by Size
  15. 15. Effect of Milling But it does give you higher yields! 20 22 24 26 28 30 32 34 Non-Ground Food Blender 2 mm 6 mm 10 mm %Recovery Cannabinoid Recovery by Size 75 80 85 90 95 Non-Ground Food Blender 2 mm 6 mm 10 mm %Recovery Terpene Recovery by Size
  16. 16. Extraction Parameters • 3 kg of plant matter • Terpene Fraction (F1): 1100 psi, 34˚C, 5 h • Cannabinoid Fraction (F2): 1900 psi, 60˚C, 12 h
  17. 17. Extraction Precision Terpenes 30 35 40 45 50 55 Non-Ground Food Blender 2 mm 6 mm 10 mm %conc. Terpene Concentration F1 Higher is better, Food Blender wins 0 1 2 3 4 5 Non-Ground Food Blender 2 mm 6 mm 10 mm %conc. Terpene Concentration F2 Lower is better, 2mm wins • 3 kg of plant matter • Terpene Fraction (F1): 1100 psi, 34˚C, 5 h • Cannabinoid Fraction (F2): 1900 psi, 60˚C, 12 h
  18. 18. 0 2 4 6 Non-Ground Food Blender 2 mm 6 mm 10 mm %conc. Cannabinoid Concentration F1 Lower is better, 10mm wins 55 60 65 70 75 Non-Ground Food Blender 2 mm 6 mm 10 mm %conc. Cannabinoid Concentration F2 Higher is better, 2mm wins Extraction Precision Cannabinoids • 3 kg of plant matter • Terpene Fraction (F1): 1100 psi, 34˚C, 5 h • Cannabinoid Fraction (F2): 1900 psi, 60˚C, 12 h
  19. 19. Extraction • Particle size effects yield and precision • SFE can extract terpene fractions • SFE can extract either THCA or THC 2mm Whole Flower Food Blender Terpenes THC THCA Milling Method Extraction Method
  20. 20. Extraction • Particle size effects yield and precision • SFE can extract terpene fractions • SFE can extract either THCA or THC • SFE can change the THC to CBD ratio 2mm Milling Method Extraction Method Terpenes THC THCA CBDA Whole Flower Food Blender
  21. 21. Analyzing CO2 SFE for THC Recovery (Super) • a= 14.9 xT + 123 xp + 18.4 xTxp
  22. 22. Analyzing CO2 SFE for THC Recovery (Sub) • a= - 7.75 xT + 126 xp + 59.3 xTxp
  23. 23. Analyzing CO2 SFE for %Terpene (Super) • a= - 14.9 xT - 11.7 xp + 16.8 xTxp
  24. 24. Analyzing CO2 SFE for %Terpene (Sub) • a= 11.8 xT - 16.6 xp - 12.5 xTxp
  25. 25. Comparing Sub- and Supercritical • SFE, 900.0 – 1900 psi, 5.0 – 60 ˚C, 22h max Response Sub Super THC Recovery 60% 80% Terpene Fraction 52% at 34% yield 63% at 82% yield
  26. 26. Lessons learned in SFE • THC extracts faster than THCA • THC to THCA ratio adjusted by SFE % Decarboxylation S.M. 7h 22h Exp. B 8.0% 25% 10% Exp. J 14% 25% 14%
  27. 27. Lessons learned in SFE • CBD extracts faster than THC • CBD to THC ratio adjusted by SFE CBD/THC S.M. 7h 22h Exp. A 4.1E-03 1.3E-02 5.0E-03 Exp. J 1.7E-04 1.3E-03 3.1E-03 Bonus: Decarboxylation of CBDA slower than for THCA J. of Supercritical Fluids, 2010, 603
  28. 28. Lessons learned in SFE • Enrichment in minor cannabinoids • CBG enrichment by SFE CBG/total Canna. S.M. 7h 22h Exp. B 2.9% 6.% 2.9% Exp. J 3.0% 13% 4.9% J. of Supercritical Fluids, 2010, 603
  29. 29. Lessons learned in SFE • Changing terpene profiles in SFE • Sativa: rich in monoterpenes • Indica: rich in sesquiterpenes Hazekamp, et al.; Cannabis and Cannabinoid Research 2016, 202
  30. 30. Visual Guide to Extracts 30
  31. 31. Post-Processing • Decarboxylation under CO2 vs air Air CO2 Decarboxylation Method Distillation Method
  32. 32. IR monitoring of decarboxylation IR as quick and cheap method to monitor decarboxylation
  33. 33. IR monitoring of decarboxylation IR as quick and cheap method to monitor decarboxylation -10 0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80 90 Concentration(%) Elapsed Time (Minutes) Reference THC Predicted THC Reference THCA Predicted THCA 15 25 35 45 55 65 75 85 15 35 55 75 PredictedTHC(%) Reference THC (%) THC -5 0 5 10 15 20 25 30 35 40 0 10 20 30 40 PredictedTHCA(%) Reference THCA (%) THCA
  34. 34. Post-Processing • Decarboxylation under CO2 vs air • Distillation to purify THC Air CO2 Decarboxylation Method Distillation Method
  35. 35. Final Product: The Blind Side • Patient: Male, mid-30, 8 seizures per day • CBD/THC 3:1 tincture, 40 mg/mL, no terpenes, MCT oil: • seizure-free for 9 weeks • Next batch of 3:1 oil: • seizures re-start immediately • THC came from two different cultivars: Diamond OG and Lemonade Haze CBD THC THCA CBDA CBN CBG THCV CBGA CBC Diamond OG 300 100 15.3 0.00 0.66 1.76 0.73 0.99 0.00 Lemonade Haze 300 100 15.6 0.00 0.45 1.62 1.19 0.00 1.06
  36. 36. Research Collaborations cbdvl.com slideshare.net/MarkusRoggen email: markus@cbdvl.com Complex Biotech Discovery Ventures

×