Suma de riemann

4,843 views

Published on

definicion de la suma de riemann

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,843
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
26
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Suma de riemann

  1. 1. Suma de Riemann<br />De Wiki Matemática<br /> Es aquella sumatoria en la cual se hacen varias subdivisiones del área bajo la curva y se van calculando las partes de una función por medio de rectángulos con base en un incremento en el eje X, ya que la suma de toda las áreas de los rectángulos va ser el área total. Dicha área es conocida como la suma de Riemann <br />Dada f(x) en el intervalo [a,b] para encontrar el área bajo la curva: Dividimos la región "S" en franjas de anchos iguales. El ancho de cada franja es: <br />Teniendo los intervalos: <br />La ecuación para la suma de Riemann es la siguiente: <br />donde haciendo de esta como un promedio entre la suma superior e inferior de Darboux. <br />Para esta suma es importante saber las siguientes identidades: <br />Sabiendo que: <br />Podemos obtener las siguientes igualdades: <br />473801-3810<br />(Donde C es constante) <br />Ejemplo # 1<br />Evaluando la suma de Riemann en cuatro sub intervalos tomando los puntos de la derecha de la siguiente función: <br />, límites <br />La suma de Riemann representa la suma de las áreas sobre el eje, menos la suma de las areas debajo del eje; esa es el área neta de los rectángulos respecto al eje. <br />

×