We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Serverless computing, also known as Functions-as-a-Service, is a recent paradigm aimed at simplifying the programming of cloud applications. The idea is that developers design applications in terms of functions, which are then deployed on a cloud infrastructure. The infrastructure takes care of executing the functions whenever requested by remote clients, dealing automatically with distribution and scaling with respect to inbound traffic. While vendors already support a variety of programming languages for serverless computing (e.g. Go, Java, Javascript, Python), as far as we know there is no reference model yet to formally reason on this paradigm. In this paper, we propose the first core formal programming model for serverless computing, which combines ideas from both the λ-calculus (for functions) and the π-calculus (for communication). To illustrate our proposal, we model a real-world serverless system. Thanks to our model, we capture the limitations of current vendors and formalise possible amendments.
Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, Fabrizio Montesi, Marco Peressotti, & Stefano Pio Zingaro. (2019). No More, No Less - A Formal Model for Serverless Computing. In H. R. Nielson & E. Tuosto (Eds.), Coordination Models and Languages - 21st IFIP WG 6.1 International Conference, COORDINATION 2019, Held as Part of the 14th International Federated Conference on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings (Vol. 11533, pp. 148–157). Springer. [https://doi.org/10.1007/978-3-030-22397-7_9]
Serverless computing, also known as Functions-as-a-Service, is a recent paradigm aimed at simplifying the programming of cloud applications. The idea is that developers design applications in terms of functions, which are then deployed on a cloud infrastructure. The infrastructure takes care of executing the functions whenever requested by remote clients, dealing automatically with distribution and scaling with respect to inbound traffic. While vendors already support a variety of programming languages for serverless computing (e.g. Go, Java, Javascript, Python), as far as we know there is no reference model yet to formally reason on this paradigm. In this paper, we propose the first core formal programming model for serverless computing, which combines ideas from both the λ-calculus (for functions) and the π-calculus (for communication). To illustrate our proposal, we model a real-world serverless system. Thanks to our model, we capture the limitations of current vendors and formalise possible amendments.
Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, Fabrizio Montesi, Marco Peressotti, & Stefano Pio Zingaro. (2019). No More, No Less - A Formal Model for Serverless Computing. In H. R. Nielson & E. Tuosto (Eds.), Coordination Models and Languages - 21st IFIP WG 6.1 International Conference, COORDINATION 2019, Held as Part of the 14th International Federated Conference on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings (Vol. 11533, pp. 148–157). Springer. [https://doi.org/10.1007/978-3-030-22397-7_9]
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!