2015 pdf-marc smith-node xl-social media sna

Marc Smith
Marc SmithDirector at Social Media Research Foundation
A project from the Social Media Research Foundation: http://www.smrfoundation.org
Network
mapping
the
social media
ecosystem
with
NodeXL
About Me
Introductions
Marc A. Smith
Chief Social Scientist / Director
Social Media Research Foundation
marc@smrfoundation.org
http://www.smrfoundation.org
http://www.codeplex.com/nodexl
http://www.twitter.com/marc_smith
http://www.linkedin.com/in/marcasmith
http://www.slideshare.net/Marc_A_Smith
http://www.flickr.com/photos/marc_smith
http://www.facebook.com/marc.smith.sociologist
Crowds matter
http://www.flickr.com/photos/amycgx/3119640267/
Crowds in social media matter
Crowds in social media have a hidden structure
https://demo-3dg-viz.herokuapp.com/
2015 pdf-marc smith-node xl-social media sna
http://www.bonkersworld.net/organizational-charts/
Kodak
Brownie
Snap-
Shot
Camera
The first
easy to use
point and shoot!
2015 pdf-marc smith-node xl-social media sna
2015 pdf-marc smith-node xl-social media sna
2015 pdf-marc smith-node xl-social media sna
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46679
#pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 21:18 UTC
NodeXL Ribbon in Excel
NodeXL in Excel
We envision hundreds of NodeXL data collectors around the world
collectively generating a free and open archive of social media network
snapshots on a wide range of topics.
http://msnbcmedia.msn.com/i/msnbc/Components/Photos/071012/071012_telescope_hmed_3p.jpg
2015 pdf-marc smith-node xl-social media sna
https://nodexlgraphgallery.org/Pages/Default.aspx?search=data+open
Top 10 Vertices:
@mlsif
@civichall
@mitgc_cm
@stone_rik
@civicist
@juansvas
@tableteer
@jcstearns
@ppolitics
@marc_smith
#pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 12:41 UTC
Top 10 Hashtags:
#pdf15
#ian1
#asmsg
#bzbooks
#bynr
#civictech
#nyc
#authors
#t4us
#aga3
#pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 12:41 UTC
Broadcast Hub
(stone_rik)
Broadcast Hub
(CivicHall, mlsif)
Broadcast Hub
(mitgc_cm)
Brand Cluster
(Isolates)
A DAY LATER
#pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 21:18 UTC
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46679
Top 10 Vertices:
@mitgc_cm
@stone_rik
@mlsif
@jgilliam
@dantebarry
@deanna
@slaughteram
@jcstearns
@civicist
@Digiphile
Top 10 Hashtags:
#pdf15
#civictech
#tiimr
#blacklivesmatter
#ian1
#asmsg
#bzbooks
#bynr
#pitmad
#scfinalsvote
#pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 21:18 UTC
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46679
Community Cluster
Broadcast Hub
(digiphile)
Brand Cluster
(Isolates)
Community Cluster
Broadcast Hub
(mlsif)
Hubs
https://flic.kr/p/4Z6GHv
https://flic.kr/p/etEmeR
Bridges
http://www.flickr.com/photos/storm-crypt/3047698741
https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46163
Top 10 Vertices:
@niyiabiriblog
@niyiabiri
@codeforamerica
@civichall
@knightfdn
@omidyarnetwork
@betanyc
@digiphile
@elle_mccann
@participatory
Top 10 Hashtags:
#civictech
#opendata
#opengov
#latism
#tictec
#govtech
#newurbanpractice
#womenforward
#gov20
#civichall
civictech Twitter NodeXL SNA Map and Report for Tuesday, 26 May 2015 at 05:25 UTC
World Wide Web
Social media must contain
one or more
social networks
Crowds in social media form networks
Social Media
(email, Facebook, Twitter,
YouTube, and more)
is all about
connections
from people
to people.
30
Patterns are
left
behind
31
There are many kinds of ties…. Send, Mention,
http://www.flickr.com/photos/stevendepolo/3254238329
Like, Link, Reply, Rate, Review, Favorite, Friend, Follow, Forward, Edit, Tag, Comment, Check-in…
“Think Link”
Nodes & Edges
Is related to
A BIs related to
Is related to
“Think Link”
Nodes & Edges
Is related to
A BIs related to
Is related to
Vertex1 Vertex 2 “Edge”
Attribute
“Vertex1”
Attribute
“Vertex2”
Attribute
@UserName1 @UserName2 value value value
A network is born whenever two GUIDs are joined.
Username Attributes
@UserName1 Value, value
Username Attributes
@UserName2 Value, value
A B
NodeXL imports “edges” from social media data sources
http://techpresident.com/news/22538/cro
wd-photography-cyber-tahrir-square
http://foreignpolicy.com/2012/06/18/visu
alizing-the-war-on-women-debate/
http://www.pewinternet.org/2014/02/20/mapping-twitter-topic-
networks-from-polarized-crowds-to-community-clusters/
Social media network analysis
• Social media is inherently made of networks,
– which are created when people link and reply.
• Collections of connections have an emergent shape,
– Some shapes are better than others.
• Some people are located in strategic locations in these
shapes,
– Centrally located people are more influential than others.
https://nodexlgraphgallery.org/Pages/Default.aspx?search=civic
http://www.pewinternet.org/2014/02/20/mapping-twitter-topic-networks-from-polarized-crowds-to-community-clusters/
[Divided]
Polarized Crowds
[Unified]
Tight Crowd
[Fragmented]
Brand Clusters
[Clustered]
Community Clusters
[In-Hub & Spoke]
Broadcast Network
[Out-Hub & Spoke]
Support Network
6 kinds of Twitter social media networks
http://www.pewresearch.org/fact-tank/2014/02/20/the-six-types-of-twitter-conversations/
[Divided]
Polarized Crowds
[Unified]
Tight Crowd
[Fragmented]
Brand Clusters
[Clustered]
Community Clusters
[In-Hub & Spoke]
Broadcast Network
[Out-Hub & Spoke]
Support Network
6 kinds of Twitter social media networks
#My2K
Polarized
#CMgrChat
In-group / Community
Lumia
Brand / Public Topic
#FLOTUS
Bazaar
New York Times Article
Paul Krugman
Broadcast: Audience + Communities
Dell Listens/Dellcares
Support
New Book in
Progress!
2015 pdf-marc smith-node xl-social media sna
Social Network Maps Reveal
Key influencers in any topic.
Sub-groups.
Bridges.
SNA questions for social media:
1. What does my topic network look like?
2. What does the topic I aspire to be look like?
3. What is the difference between #1 and #2?
4. How does my map change as I intervene?
What does #YourHashtag look like?
Who is the mayor of #YourHashtag?
[Divided]
Polarized Crowds
[Unified]
Tight Crowd
[Fragmented]
Brand Clusters
[Clustered]
Community Clusters
[In-Hub & Spoke]
Broadcast Network
[Out-Hub & Spoke]
Support Network
6 kinds of Twitter social media networks
Examples of social network scholarship
Margarita M. Orozco
Doctoral Student, School of Journalism &
Mass Communication
University of Wisconsin- Madison
Katy Pearce (@katypearce)
Assistant Prof of Communication
Studies technology & inequality in
Armenia & Azerbaijan.
Elena Pavan, Ph.D.
Post Doctoral Research Fellow
Dipartimento di Sociologia e Ricerca Sociale
Università di Trento
via Verdi 26, 38122 Trento (Italy)
Examples of social network scholarship
Margrét Vilborg Bjarnadóttir
Robert H. Smith School of Business |
University of Maryland
Data Scientist | Parliamentary
Special Investigation Commission
Prof. Diane Harris Cline
Associate Professor of History
George Washington University
C. Scott Dempwolf, PhD
Research Assistant Professor &
Director
UMD - Morgan State Center for
Economic Development
Studying the Colombian Peace
Process in Twitter
• Analyzing perceptions of the
peace process in Colombian
public opinion in Twitter.
• It is important to know what
are citizens thinking,
perceptions, and concerns.
• Q: who are the main actors in
Twitter in favor and against
the peace process who are
leading sources of
information about it?
• Colombians are the world’s
15th top Twitter users. For this
reason this social media
constitutes an important
source of information about
public opinion.
6/5/2015 57
UNIVERSITY OF WISC ONSIN–MADISONMargarita M. Orozco
Doctoral Student, School of Journalism & Mass Communication
University of Wisconsin- Madison
Katy Pearce (@katypearce)
Assistant Prof of Communication
Studies technology & inequality in
Armenia & Azerbaijan.
#ProtestBaku
Azerbaijan
Take Back The Tech!
Reclaiming ICTs against Violence Against Women
• Launched in 2006 by the Association for Progressive Communications
Women Rights Program (APC WRP)
• Runs yearly during the 16 days against Violence Against Women (VAW)
• Website http://www.takebackthetech.net
• “16 daily actions” to reclaim ICTs against VAW and a Tweetathon
• Explored in the context of the project REACtION
(http://www.reactionproject.info) in relation to the interplay between the
“offline” advocacy strategy and the “online” Twitter networks over time
• Findings: shifts in the advocacy strategy shift the network structure –
moving from the outside to the online of the institutions (lobbying at the
Commission on the Status of Women) led to a centralized Twitter network
where organizational and institutional accounts play most central roles
REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info.
Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
Elena Pavan, Ph.D.
Post Doctoral Research Fellow
Dipartimento di Sociologia e Ricerca Sociale
Università di Trento
via Verdi 26, 38122 Trento (Italy)
2012: Outside institutions,
a grassroots conversation
REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info.
Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
2013: Accessing institutions,
a more structured conversation
REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info.
Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
2014: Inside institutions,
a centralized conversation
REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info.
Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
Margrét Vilborg Bjarnadóttir
Robert H. Smith School of Business | University of Maryland
Data Scientist | Parliamentary Special Investigation Commission
Data Driven Large Exposure Estimation:
A Case Study of a Failed Banking System
Co-authors: Sigríður Benediktsdóttir and Guðmundur Axel Hansen
Supporting Publications:
Margrét V. Bjarnadóttir and Gudmundur A. Hanssen. 2010. Cross-Ownership and Large Exposures; Analysis and Policy Recommendations. Report of the
Special Investigation Commission, Volume 9. Sigridur Benediksdottir and Margrét V. Bjarnadóttir. “Large Exposure Estimation through Automatic Business
Group Identification”. Proceedings to DSMM 2014.
C. Scott
Dempwolf,
PhD
Research Assistant
Professor & Director
UMD - Morgan State
Center for Economic
Development
http://www.terpconnect.umd.edu/~dempy/
Social Network Analysis for the humanities?
Social Network Analysis and Ancient History
Prof. Diane Harris Cline
Associate Professor of History; Affiliated faculty
member in Classical and Near Eastern
Literatures and Civilizations.
George Washington University
1. New framework for
analysis
2. Data visualization allows
new perspectives –
less linear, more
comprehensive
Applying the insights of
social networks to social media:
Your social media audience is smaller…
…than the audiences of
ten influential voices.
Build a collection of mayors
• Map multiple topics
– Your brand and company names
– Your competitor brands and company names
– The names of the activities or locations related to
your products
• Identify the top people in each topic
• Follow these people
– 30-50% of the time they follow you back
• Re-tweet these people (if they did not follow you)
• 30-50% of the time they follow you back
Speak the language of the mayors
• Use NodeXL content analysis to identify each
users most salient:
– Words
– Word pairs
– URLs
– #Hashtags
• Mix the language of the Mayors with your
brand’s messages.
Speak the language of the mayors
The “perfect” tweet:
.@Theirname #Theirhashtag News about your brand
using their words http://your.site #Yourhashtag
Speak the language of the mayors
Some shapes are better than others:
• The value of Broadcast versus community
network!
• From community to brand!
• Support and why community can be a signal
of failure!
Three network phases of social media success
Phase 1: You get an audience Phase 2: Your audience gets an audience Phase 3: Audience becomes community
Some shapes are better than others
• Each shape reflects the kind of social activity
that generates it:
– Divided: Conflict
– Unified: In-group
– Brand: Fragmentation
– Community: Clustering
– Broadcast: Hub and spoke (In)
– Support: Hub and spoke (Out)
[Divided]
Polarized Crowds
[Unified]
Tight Crowd
[Fragmented]
Brand Clusters
[Clustered]
Communities
[In-Hub & Spoke]
Broadcast
Network
[Out-Hub & Spoke]
Support
Network
[Low probability]
Find bridge users.
Encourage shared
material.
[Low probability]
Get message out to
disconnected
communities.
[Possible transition]
Draw in new
participants.
[Possible transition]
Regularly create
content.
[Possible transition]
Reply to multiple
users.
[Undesirable
transition]
Remove bridges,
highlight divisions.
[Low probability]
Get message out to
disconnected
communities.
[High probability]
Draw in new
participants.
[Possible transition]
Regularly create
content.
[Possible transition]
Reply to multiple
users.
[Undesirable
transition]
Increase density of
connections in two
groups.
[Low probability]
Dramatically increase
density of
connections.
[High probability]
Increase retention,
build connections.
[Possible transition]
Regularly create
content.
[Possible transition]
Reply to multiple
users.
[Undesirable
transition]
Increase density of
connections in two
groups.
[Low probability]
Dramatically increase
density of
connections.
[Undesirable
transition]
Increase population,
reduce connections.
[Possible transition]
Regularly create
content.
[Possible transition]
Reply to multiple
users.
[Undesirable
transition]
Increase density of
connections in two
groups.
[Low probability]
Dramatically increase
density of
connections.
[Low probability]
Get message out to
disconnected
communities.
[Possible transition]
Increase retention,
build connections.
[High probability]
Increase reply rate,
reply to multiple
users.
[Undesirable
transition]
Increase density of
connections in two
groups.
[Low probability]
Dramatically increase
density of
connections.
[Possible transition]
Get message out to
disconnected
communities.
[High probability]
Increase retention,
build connections.
[High probability]
Increase publication
of new content and
regularly create
content.
Request your own network map and report
http://connectedaction.net
Monitor your topics with social network maps
• Identify the
– Key people
– Groups
– Top topics
• Locate your social media accounts within the
network
What we want to do:
(Build the tools to) map the social web
• Move NodeXL to the web: (Node[NOT]XL)
– Node for Google Doc Spreadsheets?
– WebGL Canvas? D3.JS? Sigma.JS
• Connect to more data sources of interest:
– RDF, MediaWikis, Gmail, NYT, Citation Networks
• Solve hard network manipulation UI problems:
– Modal transform, Time series, Automated layouts
• Grow and maintain archives of social media network data sets for
research use.
• Improve network science education:
– Workshops on social media network analysis
– Live lectures and presentations
– Videos and training materials
How you can help
• Sponsor a feature
• Sponsor workshops
• Sponsor a student
• Schedule training
• Sponsor the foundation
• Donate your money, code, computation, storage,
bandwidth, data or employee’s time
• Help promote the work of the Social Media
Research Foundation
A project from the Social Media Research Foundation: http://www.smrfoundation.org
Network
mapping
the
social media
ecosystem
with
NodeXL
2015 pdf-marc smith-node xl-social media sna
1 of 80

Recommended

2015 #MMeasure-Marc Smith-NodeXL Mapping social media using social network ma... by
2015 #MMeasure-Marc Smith-NodeXL Mapping social media using social network ma...2015 #MMeasure-Marc Smith-NodeXL Mapping social media using social network ma...
2015 #MMeasure-Marc Smith-NodeXL Mapping social media using social network ma...Marc Smith
928 views70 slides
2014 TheNextWeb-Mapping connections with NodeXL by
2014 TheNextWeb-Mapping connections with NodeXL2014 TheNextWeb-Mapping connections with NodeXL
2014 TheNextWeb-Mapping connections with NodeXLMarc Smith
8K views73 slides
Think Link: Network Insights with No Programming Skills by
Think Link: Network Insights with No Programming SkillsThink Link: Network Insights with No Programming Skills
Think Link: Network Insights with No Programming SkillsMarc Smith
6K views101 slides
20151001 charles university prague - marc smith - node xl-picturing political... by
20151001 charles university prague - marc smith - node xl-picturing political...20151001 charles university prague - marc smith - node xl-picturing political...
20151001 charles university prague - marc smith - node xl-picturing political...Marc Smith
2K views86 slides
2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA by
2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNA
2016 SocialMedia.Org Marc Smith-NodeXL-Social Media SNAMarc Smith
2.9K views82 slides
20121010 marc smith - mapping collections of connections in social media with... by
20121010 marc smith - mapping collections of connections in social media with...20121010 marc smith - mapping collections of connections in social media with...
20121010 marc smith - mapping collections of connections in social media with...Marc Smith
1.7K views80 slides

More Related Content

What's hot

2013 NodeXL Social Media Network Analysis by
2013 NodeXL Social Media Network Analysis2013 NodeXL Social Media Network Analysis
2013 NodeXL Social Media Network AnalysisMarc Smith
46K views95 slides
20120622 web sci12-won-marc smith-semantic and social network analysis of … by
20120622 web sci12-won-marc smith-semantic and social network analysis of …20120622 web sci12-won-marc smith-semantic and social network analysis of …
20120622 web sci12-won-marc smith-semantic and social network analysis of …Marc Smith
2.6K views26 slides
2017 05-26 NodeXL Twitter search #shakeupshow by
2017 05-26 NodeXL Twitter search #shakeupshow2017 05-26 NodeXL Twitter search #shakeupshow
2017 05-26 NodeXL Twitter search #shakeupshowMarc Smith
495 views17 slides
2010 sept - mobile web africa - marc smith - says who - mapping social medi... by
2010   sept - mobile web africa - marc smith - says who - mapping social medi...2010   sept - mobile web africa - marc smith - says who - mapping social medi...
2010 sept - mobile web africa - marc smith - says who - mapping social medi...Marc Smith
747 views62 slides
Prof. Hendrik Speck - Social Network Analysis by
Prof. Hendrik Speck - Social Network AnalysisProf. Hendrik Speck - Social Network Analysis
Prof. Hendrik Speck - Social Network AnalysisHendrik Speck
30.4K views126 slides
Simplifying Social Network Diagrams by
Simplifying Social Network Diagrams Simplifying Social Network Diagrams
Simplifying Social Network Diagrams Lynn Cherny
3.9K views22 slides

What's hot(20)

2013 NodeXL Social Media Network Analysis by Marc Smith
2013 NodeXL Social Media Network Analysis2013 NodeXL Social Media Network Analysis
2013 NodeXL Social Media Network Analysis
Marc Smith46K views
20120622 web sci12-won-marc smith-semantic and social network analysis of … by Marc Smith
20120622 web sci12-won-marc smith-semantic and social network analysis of …20120622 web sci12-won-marc smith-semantic and social network analysis of …
20120622 web sci12-won-marc smith-semantic and social network analysis of …
Marc Smith2.6K views
2017 05-26 NodeXL Twitter search #shakeupshow by Marc Smith
2017 05-26 NodeXL Twitter search #shakeupshow2017 05-26 NodeXL Twitter search #shakeupshow
2017 05-26 NodeXL Twitter search #shakeupshow
Marc Smith495 views
2010 sept - mobile web africa - marc smith - says who - mapping social medi... by Marc Smith
2010   sept - mobile web africa - marc smith - says who - mapping social medi...2010   sept - mobile web africa - marc smith - says who - mapping social medi...
2010 sept - mobile web africa - marc smith - says who - mapping social medi...
Marc Smith747 views
Prof. Hendrik Speck - Social Network Analysis by Hendrik Speck
Prof. Hendrik Speck - Social Network AnalysisProf. Hendrik Speck - Social Network Analysis
Prof. Hendrik Speck - Social Network Analysis
Hendrik Speck30.4K views
Simplifying Social Network Diagrams by Lynn Cherny
Simplifying Social Network Diagrams Simplifying Social Network Diagrams
Simplifying Social Network Diagrams
Lynn Cherny3.9K views
Social Network Analysis (SNA) and its implications for knowledge discovery in... by ACMBangalore
Social Network Analysis (SNA) and its implications for knowledge discovery in...Social Network Analysis (SNA) and its implications for knowledge discovery in...
Social Network Analysis (SNA) and its implications for knowledge discovery in...
ACMBangalore1.8K views
Big social data analytics - social network analysis by Jari Jussila
Big social data analytics - social network analysis Big social data analytics - social network analysis
Big social data analytics - social network analysis
Jari Jussila2.3K views
How to use social media network analysis for amplification by Marc Smith
How to use social media network analysis for amplificationHow to use social media network analysis for amplification
How to use social media network analysis for amplification
Marc Smith756 views
The Basics of Social Network Analysis by Rory Sie
The Basics of Social Network AnalysisThe Basics of Social Network Analysis
The Basics of Social Network Analysis
Rory Sie9.2K views
2010 june - personal democracy forum - marc smith - mapping political socia... by Marc Smith
2010   june - personal democracy forum - marc smith - mapping political socia...2010   june - personal democracy forum - marc smith - mapping political socia...
2010 june - personal democracy forum - marc smith - mapping political socia...
Marc Smith12.5K views
2009 December NodeXL Overview by Marc Smith
2009 December NodeXL Overview2009 December NodeXL Overview
2009 December NodeXL Overview
Marc Smith4.1K views
Social Network Analysis Introduction including Data Structure Graph overview. by Doug Needham
Social Network Analysis Introduction including Data Structure Graph overview. Social Network Analysis Introduction including Data Structure Graph overview.
Social Network Analysis Introduction including Data Structure Graph overview.
Doug Needham3K views
Big Data: Social Network Analysis by Michel Bruley
Big Data: Social Network AnalysisBig Data: Social Network Analysis
Big Data: Social Network Analysis
Michel Bruley8.4K views
20110128 connected action-node xl-sea of connections by Marc Smith
20110128 connected action-node xl-sea of connections20110128 connected action-node xl-sea of connections
20110128 connected action-node xl-sea of connections
Marc Smith1.4K views
Social network analysis & Big Data - Telecommunications and more by Wael Elrifai
Social network analysis & Big Data - Telecommunications and moreSocial network analysis & Big Data - Telecommunications and more
Social network analysis & Big Data - Telecommunications and more
Wael Elrifai10.2K views
Introduction to Social Network Analysis by Patti Anklam
Introduction to Social Network AnalysisIntroduction to Social Network Analysis
Introduction to Social Network Analysis
Patti Anklam5.1K views
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear... by Xiaohan Zeng
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
Social Network Analysis: What It Is, Why We Should Care, and What We Can Lear...
Xiaohan Zeng1.6K views
2010 Catalyst Conference - Trends in Social Network Analysis by Marc Smith
2010 Catalyst Conference - Trends in Social Network Analysis2010 Catalyst Conference - Trends in Social Network Analysis
2010 Catalyst Conference - Trends in Social Network Analysis
Marc Smith1.3K views
Social Network Analysis (SNA) Made Easy by Jeff Mohr
Social Network Analysis (SNA) Made EasySocial Network Analysis (SNA) Made Easy
Social Network Analysis (SNA) Made Easy
Jeff Mohr1.4K views

Viewers also liked

Node XL - features and demo by
Node XL - features and demoNode XL - features and demo
Node XL - features and demoMayank Mohan
9.4K views26 slides
Social Network Analysis by
Social Network AnalysisSocial Network Analysis
Social Network AnalysisGiorgos Cheliotis
225.9K views43 slides
Social Networks at Scale by
Social Networks at ScaleSocial Networks at Scale
Social Networks at ScaleEoin Hurrell, PhD
535 views21 slides
Making the invisible visible through SNA by
Making the invisible visible through SNAMaking the invisible visible through SNA
Making the invisible visible through SNAMYRA School of Business
2.1K views69 slides
Social Network Analysis for Competitive Intelligence by
Social Network Analysis for Competitive IntelligenceSocial Network Analysis for Competitive Intelligence
Social Network Analysis for Competitive IntelligenceAugust Jackson
2.5K views18 slides
Social network analysis by
Social network analysisSocial network analysis
Social network analysisSohom Ghosh
1.2K views22 slides

Viewers also liked(17)

Node XL - features and demo by Mayank Mohan
Node XL - features and demoNode XL - features and demo
Node XL - features and demo
Mayank Mohan9.4K views
Social Network Analysis for Competitive Intelligence by August Jackson
Social Network Analysis for Competitive IntelligenceSocial Network Analysis for Competitive Intelligence
Social Network Analysis for Competitive Intelligence
August Jackson2.5K views
Social network analysis by Sohom Ghosh
Social network analysisSocial network analysis
Social network analysis
Sohom Ghosh1.2K views
Text Analysis of Social Networks: Working with FB and VK Data by Alexander Panchenko
Text Analysis of Social Networks: Working with FB and VK DataText Analysis of Social Networks: Working with FB and VK Data
Text Analysis of Social Networks: Working with FB and VK Data
Using Social Network Analysis to Assess Organizational Development Initiatives by Stephanie Richter
Using Social Network Analysis to Assess Organizational Development InitiativesUsing Social Network Analysis to Assess Organizational Development Initiatives
Using Social Network Analysis to Assess Organizational Development Initiatives
Stephanie Richter893 views
Text analytics in Python and R with examples from Tobacco Control by Ben Healey
Text analytics in Python and R with examples from Tobacco ControlText analytics in Python and R with examples from Tobacco Control
Text analytics in Python and R with examples from Tobacco Control
Ben Healey15.2K views
TN3270 Access to Mainframe SNA Applications by zOSCommserver
TN3270 Access to Mainframe SNA ApplicationsTN3270 Access to Mainframe SNA Applications
TN3270 Access to Mainframe SNA Applications
zOSCommserver7.4K views
Дмитрий Кропотов, ВМК МГУ, Группа Байесовских Методов, «Методы оптимизации бо... by Mail.ru Group
Дмитрий Кропотов, ВМК МГУ, Группа Байесовских Методов, «Методы оптимизации бо...Дмитрий Кропотов, ВМК МГУ, Группа Байесовских Методов, «Методы оптимизации бо...
Дмитрий Кропотов, ВМК МГУ, Группа Байесовских Методов, «Методы оптимизации бо...
Mail.ru Group9.7K views
Дмитрий Бугайченко, Одноклассники. Анализ данных в социальных сетях на практике by Mail.ru Group
Дмитрий Бугайченко, Одноклассники. Анализ данных в социальных сетях на практикеДмитрий Бугайченко, Одноклассники. Анализ данных в социальных сетях на практике
Дмитрий Бугайченко, Одноклассники. Анализ данных в социальных сетях на практике
Mail.ru Group9.8K views
Дмитрий Бугайченко, Одноклассники. SNA Hackathon 2016 by Mail.ru Group
Дмитрий Бугайченко, Одноклассники. SNA Hackathon 2016Дмитрий Бугайченко, Одноклассники. SNA Hackathon 2016
Дмитрий Бугайченко, Одноклассники. SNA Hackathon 2016
Mail.ru Group9.4K views
Workshop on Programming in Python - day II by Satyaki Sikdar
Workshop on Programming in Python - day IIWorkshop on Programming in Python - day II
Workshop on Programming in Python - day II
Satyaki Sikdar602 views
Social Network Analysis by Sujoy Bag
Social Network AnalysisSocial Network Analysis
Social Network Analysis
Sujoy Bag584 views
Social Networks and Social Capital by Giorgos Cheliotis
Social Networks and Social CapitalSocial Networks and Social Capital
Social Networks and Social Capital
Giorgos Cheliotis39.9K views
Learn 90% of Python in 90 Minutes by Matt Harrison
Learn 90% of Python in 90 MinutesLearn 90% of Python in 90 Minutes
Learn 90% of Python in 90 Minutes
Matt Harrison319.7K views

Similar to 2015 pdf-marc smith-node xl-social media sna

Overview Of Wcu Research (16 Dec2009)Sj by
Overview Of Wcu Research (16 Dec2009)SjOverview Of Wcu Research (16 Dec2009)Sj
Overview Of Wcu Research (16 Dec2009)SjWCU Webometrics Institute
969 views135 slides
The Networked Creativity in the Censored Web 2.0 by
The Networked Creativity in the Censored Web 2.0The Networked Creativity in the Censored Web 2.0
The Networked Creativity in the Censored Web 2.0Weiai Wayne Xu
673 views19 slides
Data mining for social media by
Data mining for social mediaData mining for social media
Data mining for social mediarangesharp
3.6K views16 slides
An Introduction to NodeXL for Social Scientists by
An Introduction to NodeXL for Social ScientistsAn Introduction to NodeXL for Social Scientists
An Introduction to NodeXL for Social ScientistsDr Wasim Ahmed
1.9K views37 slides
20110719 social media research foundation-charting collections of connections by
20110719 social media research foundation-charting collections of connections20110719 social media research foundation-charting collections of connections
20110719 social media research foundation-charting collections of connectionsSMRFoundation
895 views71 slides
Appreciating Contradications: The Cyberpsychology of Information Security by
Appreciating Contradications: The Cyberpsychology of Information SecurityAppreciating Contradications: The Cyberpsychology of Information Security
Appreciating Contradications: The Cyberpsychology of Information SecurityCiarán Mc Mahon
1.3K views39 slides

Similar to 2015 pdf-marc smith-node xl-social media sna(20)

The Networked Creativity in the Censored Web 2.0 by Weiai Wayne Xu
The Networked Creativity in the Censored Web 2.0The Networked Creativity in the Censored Web 2.0
The Networked Creativity in the Censored Web 2.0
Weiai Wayne Xu673 views
Data mining for social media by rangesharp
Data mining for social mediaData mining for social media
Data mining for social media
rangesharp3.6K views
An Introduction to NodeXL for Social Scientists by Dr Wasim Ahmed
An Introduction to NodeXL for Social ScientistsAn Introduction to NodeXL for Social Scientists
An Introduction to NodeXL for Social Scientists
Dr Wasim Ahmed1.9K views
20110719 social media research foundation-charting collections of connections by SMRFoundation
20110719 social media research foundation-charting collections of connections20110719 social media research foundation-charting collections of connections
20110719 social media research foundation-charting collections of connections
SMRFoundation895 views
Appreciating Contradications: The Cyberpsychology of Information Security by Ciarán Mc Mahon
Appreciating Contradications: The Cyberpsychology of Information SecurityAppreciating Contradications: The Cyberpsychology of Information Security
Appreciating Contradications: The Cyberpsychology of Information Security
Ciarán Mc Mahon1.3K views
2010-November-8-NIA - Smart Society and Civic Culture - Marc Smith by Marc Smith
2010-November-8-NIA - Smart Society and Civic Culture - Marc Smith2010-November-8-NIA - Smart Society and Civic Culture - Marc Smith
2010-November-8-NIA - Smart Society and Civic Culture - Marc Smith
Marc Smith1.3K views
Ejis Analysis by u3037519
Ejis AnalysisEjis Analysis
Ejis Analysis
u3037519399 views
Investigating Internet-based Korean politics using e-research tools Kaist Cu... by Han Woo PARK
Investigating Internet-based Korean politics using e-research tools Kaist Cu...Investigating Internet-based Korean politics using e-research tools Kaist Cu...
Investigating Internet-based Korean politics using e-research tools Kaist Cu...
Han Woo PARK673 views
SFX, Metalib, mobile services and social networks by Ian Clark
SFX, Metalib, mobile services and social networksSFX, Metalib, mobile services and social networks
SFX, Metalib, mobile services and social networks
Ian Clark945 views
The Impacts of Social Networking and Its Analysis by IJMER
The Impacts of Social Networking and Its AnalysisThe Impacts of Social Networking and Its Analysis
The Impacts of Social Networking and Its Analysis
IJMER464 views
1999 ACM SIGCHI - Counting on Community in Cyberspace by Marc Smith
1999   ACM SIGCHI - Counting on Community in Cyberspace1999   ACM SIGCHI - Counting on Community in Cyberspace
1999 ACM SIGCHI - Counting on Community in Cyberspace
Marc Smith534 views
Subscriber Churn Prediction Model using Social Network Analysis In Telecommun... by BAINIDA
Subscriber Churn Prediction Model using Social Network Analysis In Telecommun...Subscriber Churn Prediction Model using Social Network Analysis In Telecommun...
Subscriber Churn Prediction Model using Social Network Analysis In Telecommun...
BAINIDA3.7K views
Personal Digital Archiving 2011 - Charting Collections of Connections in Soci... by Marc Smith
Personal Digital Archiving 2011 - Charting Collections of Connections in Soci...Personal Digital Archiving 2011 - Charting Collections of Connections in Soci...
Personal Digital Archiving 2011 - Charting Collections of Connections in Soci...
Marc Smith1.7K views
Not re-decentralizing the Web is not only a missed opportunity, it is irrespo... by Markus Luczak-Rösch
Not re-decentralizing the Web is not only a missed opportunity, it is irrespo...Not re-decentralizing the Web is not only a missed opportunity, it is irrespo...
Not re-decentralizing the Web is not only a missed opportunity, it is irrespo...
Monitoring and Analysis of Online Communities by The Open University
Monitoring and Analysis of Online CommunitiesMonitoring and Analysis of Online Communities
Monitoring and Analysis of Online Communities
The Open University3.5K views
Learning as a Social Process by Robert Cormia
Learning as a Social ProcessLearning as a Social Process
Learning as a Social Process
Robert Cormia9.4K views
GIJC19 - NodeXL Tutorial - Session 1 by Harald Meier
GIJC19 - NodeXL Tutorial - Session 1GIJC19 - NodeXL Tutorial - Session 1
GIJC19 - NodeXL Tutorial - Session 1
Harald Meier186 views

More from Marc Smith

Think link what is an edge - NodeXL by
Think link   what is an edge - NodeXLThink link   what is an edge - NodeXL
Think link what is an edge - NodeXLMarc Smith
319 views16 slides
20130724 ted x-marc smith-digital health futures empowerment or coercion by
20130724 ted x-marc smith-digital health futures empowerment or coercion20130724 ted x-marc smith-digital health futures empowerment or coercion
20130724 ted x-marc smith-digital health futures empowerment or coercionMarc Smith
4.7K views33 slides
20121001 pawcon 2012-marc smith - mapping collections of connections in socia... by
20121001 pawcon 2012-marc smith - mapping collections of connections in socia...20121001 pawcon 2012-marc smith - mapping collections of connections in socia...
20121001 pawcon 2012-marc smith - mapping collections of connections in socia...Marc Smith
1.6K views81 slides
2012 ona practitioner-courseflyer by
2012 ona practitioner-courseflyer2012 ona practitioner-courseflyer
2012 ona practitioner-courseflyerMarc Smith
738 views4 slides
20111123 mwa2011-marc smith by
20111123 mwa2011-marc smith20111123 mwa2011-marc smith
20111123 mwa2011-marc smithMarc Smith
1.1K views75 slides
20111103 con tech2011-marc smith by
20111103 con tech2011-marc smith20111103 con tech2011-marc smith
20111103 con tech2011-marc smithMarc Smith
1.4K views46 slides

More from Marc Smith(16)

Think link what is an edge - NodeXL by Marc Smith
Think link   what is an edge - NodeXLThink link   what is an edge - NodeXL
Think link what is an edge - NodeXL
Marc Smith319 views
20130724 ted x-marc smith-digital health futures empowerment or coercion by Marc Smith
20130724 ted x-marc smith-digital health futures empowerment or coercion20130724 ted x-marc smith-digital health futures empowerment or coercion
20130724 ted x-marc smith-digital health futures empowerment or coercion
Marc Smith4.7K views
20121001 pawcon 2012-marc smith - mapping collections of connections in socia... by Marc Smith
20121001 pawcon 2012-marc smith - mapping collections of connections in socia...20121001 pawcon 2012-marc smith - mapping collections of connections in socia...
20121001 pawcon 2012-marc smith - mapping collections of connections in socia...
Marc Smith1.6K views
2012 ona practitioner-courseflyer by Marc Smith
2012 ona practitioner-courseflyer2012 ona practitioner-courseflyer
2012 ona practitioner-courseflyer
Marc Smith738 views
20111123 mwa2011-marc smith by Marc Smith
20111123 mwa2011-marc smith20111123 mwa2011-marc smith
20111123 mwa2011-marc smith
Marc Smith1.1K views
20111103 con tech2011-marc smith by Marc Smith
20111103 con tech2011-marc smith20111103 con tech2011-marc smith
20111103 con tech2011-marc smith
Marc Smith1.4K views
2011 IEEE Social Computing Nodexl: Group-In-A-Box by Marc Smith
2011 IEEE Social Computing Nodexl: Group-In-A-Box2011 IEEE Social Computing Nodexl: Group-In-A-Box
2011 IEEE Social Computing Nodexl: Group-In-A-Box
Marc Smith2.2K views
20110830 Introducing the Social Media Research Foundation by Marc Smith
20110830 Introducing the Social Media Research Foundation20110830 Introducing the Social Media Research Foundation
20110830 Introducing the Social Media Research Foundation
Marc Smith1.5K views
Analyzing social media networks with NodeXL - Chapter-14 Images by Marc Smith
Analyzing social media networks with NodeXL - Chapter-14 ImagesAnalyzing social media networks with NodeXL - Chapter-14 Images
Analyzing social media networks with NodeXL - Chapter-14 Images
Marc Smith2.4K views
Analyzing social media networks with NodeXL - Chapter-13 Images by Marc Smith
Analyzing social media networks with NodeXL - Chapter-13 ImagesAnalyzing social media networks with NodeXL - Chapter-13 Images
Analyzing social media networks with NodeXL - Chapter-13 Images
Marc Smith2.7K views
Analyzing social media networks with NodeXL - Chapter- 12 images by Marc Smith
Analyzing social media networks with NodeXL - Chapter- 12 imagesAnalyzing social media networks with NodeXL - Chapter- 12 images
Analyzing social media networks with NodeXL - Chapter- 12 images
Marc Smith2.6K views
Analyzing social media networks with NodeXL - Chapter-11 Images by Marc Smith
Analyzing social media networks with NodeXL - Chapter-11 ImagesAnalyzing social media networks with NodeXL - Chapter-11 Images
Analyzing social media networks with NodeXL - Chapter-11 Images
Marc Smith2.6K views
Analyzing social media networks with NodeXL - Chapter-10 Images by Marc Smith
Analyzing social media networks with NodeXL - Chapter-10 ImagesAnalyzing social media networks with NodeXL - Chapter-10 Images
Analyzing social media networks with NodeXL - Chapter-10 Images
Marc Smith2.8K views
Analyzing social media networks with NodeXL - Chapter- 09 Images by Marc Smith
Analyzing social media networks with NodeXL - Chapter- 09 ImagesAnalyzing social media networks with NodeXL - Chapter- 09 Images
Analyzing social media networks with NodeXL - Chapter- 09 Images
Marc Smith2.5K views
Analyzing social media networks with NodeXL - Chapter- 08 images by Marc Smith
Analyzing social media networks with NodeXL - Chapter- 08 imagesAnalyzing social media networks with NodeXL - Chapter- 08 images
Analyzing social media networks with NodeXL - Chapter- 08 images
Marc Smith2.9K views
Analyzing social media networks with NodeXL - Chapter-07 Images by Marc Smith
Analyzing social media networks with NodeXL - Chapter-07 ImagesAnalyzing social media networks with NodeXL - Chapter-07 Images
Analyzing social media networks with NodeXL - Chapter-07 Images
Marc Smith3.4K views

Recently uploaded

digital marketing by
digital marketing digital marketing
digital marketing mdZafar18
10 views1 slide
Trails Carolina Death Unraveling a Troubled History of Allegations.pdf by
Trails Carolina Death Unraveling a Troubled History of Allegations.pdfTrails Carolina Death Unraveling a Troubled History of Allegations.pdf
Trails Carolina Death Unraveling a Troubled History of Allegations.pdfAzura Everhart
5 views5 slides
Are Negative Yelp Reviews Ruining Your Business Solutions Inside by
Are Negative Yelp Reviews Ruining Your Business Solutions InsideAre Negative Yelp Reviews Ruining Your Business Solutions Inside
Are Negative Yelp Reviews Ruining Your Business Solutions InsideOutreach Digital Marketing
8 views22 slides
Jack the Drawer: Journey to the West Chapters 1-17 **unedited** by
Jack the Drawer: Journey to the West Chapters 1-17 **unedited** Jack the Drawer: Journey to the West Chapters 1-17 **unedited**
Jack the Drawer: Journey to the West Chapters 1-17 **unedited** freetop498
13 views22 slides
sOCO 9.pdf by
sOCO 9.pdfsOCO 9.pdf
sOCO 9.pdfSocioCosmos
9 views1 slide
Soco 10.pdf by
Soco 10.pdfSoco 10.pdf
Soco 10.pdfSocioCosmos
8 views1 slide

Recently uploaded(7)

digital marketing by mdZafar18
digital marketing digital marketing
digital marketing
mdZafar1810 views
Trails Carolina Death Unraveling a Troubled History of Allegations.pdf by Azura Everhart
Trails Carolina Death Unraveling a Troubled History of Allegations.pdfTrails Carolina Death Unraveling a Troubled History of Allegations.pdf
Trails Carolina Death Unraveling a Troubled History of Allegations.pdf
Azura Everhart5 views
Jack the Drawer: Journey to the West Chapters 1-17 **unedited** by freetop498
Jack the Drawer: Journey to the West Chapters 1-17 **unedited** Jack the Drawer: Journey to the West Chapters 1-17 **unedited**
Jack the Drawer: Journey to the West Chapters 1-17 **unedited**
freetop49813 views

2015 pdf-marc smith-node xl-social media sna

  • 1. A project from the Social Media Research Foundation: http://www.smrfoundation.org Network mapping the social media ecosystem with NodeXL
  • 2. About Me Introductions Marc A. Smith Chief Social Scientist / Director Social Media Research Foundation marc@smrfoundation.org http://www.smrfoundation.org http://www.codeplex.com/nodexl http://www.twitter.com/marc_smith http://www.linkedin.com/in/marcasmith http://www.slideshare.net/Marc_A_Smith http://www.flickr.com/photos/marc_smith http://www.facebook.com/marc.smith.sociologist
  • 5. Crowds in social media have a hidden structure
  • 13. https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46679 #pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 21:18 UTC
  • 16. We envision hundreds of NodeXL data collectors around the world collectively generating a free and open archive of social media network snapshots on a wide range of topics. http://msnbcmedia.msn.com/i/msnbc/Components/Photos/071012/071012_telescope_hmed_3p.jpg
  • 19. Top 10 Vertices: @mlsif @civichall @mitgc_cm @stone_rik @civicist @juansvas @tableteer @jcstearns @ppolitics @marc_smith #pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 12:41 UTC Top 10 Hashtags: #pdf15 #ian1 #asmsg #bzbooks #bynr #civictech #nyc #authors #t4us #aga3
  • 20. #pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 12:41 UTC Broadcast Hub (stone_rik) Broadcast Hub (CivicHall, mlsif) Broadcast Hub (mitgc_cm) Brand Cluster (Isolates)
  • 22. #pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 21:18 UTC https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46679 Top 10 Vertices: @mitgc_cm @stone_rik @mlsif @jgilliam @dantebarry @deanna @slaughteram @jcstearns @civicist @Digiphile Top 10 Hashtags: #pdf15 #civictech #tiimr #blacklivesmatter #ian1 #asmsg #bzbooks #bynr #pitmad #scfinalsvote
  • 23. #pdf15 Twitter NodeXL SNA Map and Report for Thursday, 04 June 2015 at 21:18 UTC https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46679 Community Cluster Broadcast Hub (digiphile) Brand Cluster (Isolates) Community Cluster Broadcast Hub (mlsif)
  • 24. Hubs
  • 28. https://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=46163 Top 10 Vertices: @niyiabiriblog @niyiabiri @codeforamerica @civichall @knightfdn @omidyarnetwork @betanyc @digiphile @elle_mccann @participatory Top 10 Hashtags: #civictech #opendata #opengov #latism #tictec #govtech #newurbanpractice #womenforward #gov20 #civichall civictech Twitter NodeXL SNA Map and Report for Tuesday, 26 May 2015 at 05:25 UTC
  • 29. World Wide Web Social media must contain one or more social networks Crowds in social media form networks
  • 30. Social Media (email, Facebook, Twitter, YouTube, and more) is all about connections from people to people. 30
  • 32. There are many kinds of ties…. Send, Mention, http://www.flickr.com/photos/stevendepolo/3254238329 Like, Link, Reply, Rate, Review, Favorite, Friend, Follow, Forward, Edit, Tag, Comment, Check-in…
  • 33. “Think Link” Nodes & Edges Is related to A BIs related to Is related to
  • 34. “Think Link” Nodes & Edges Is related to A BIs related to Is related to
  • 35. Vertex1 Vertex 2 “Edge” Attribute “Vertex1” Attribute “Vertex2” Attribute @UserName1 @UserName2 value value value A network is born whenever two GUIDs are joined. Username Attributes @UserName1 Value, value Username Attributes @UserName2 Value, value A B
  • 36. NodeXL imports “edges” from social media data sources
  • 38. Social media network analysis • Social media is inherently made of networks, – which are created when people link and reply. • Collections of connections have an emergent shape, – Some shapes are better than others. • Some people are located in strategic locations in these shapes, – Centrally located people are more influential than others.
  • 41. [Divided] Polarized Crowds [Unified] Tight Crowd [Fragmented] Brand Clusters [Clustered] Community Clusters [In-Hub & Spoke] Broadcast Network [Out-Hub & Spoke] Support Network 6 kinds of Twitter social media networks
  • 43. [Divided] Polarized Crowds [Unified] Tight Crowd [Fragmented] Brand Clusters [Clustered] Community Clusters [In-Hub & Spoke] Broadcast Network [Out-Hub & Spoke] Support Network 6 kinds of Twitter social media networks
  • 48. New York Times Article Paul Krugman Broadcast: Audience + Communities
  • 52. Social Network Maps Reveal Key influencers in any topic. Sub-groups. Bridges.
  • 53. SNA questions for social media: 1. What does my topic network look like? 2. What does the topic I aspire to be look like? 3. What is the difference between #1 and #2? 4. How does my map change as I intervene? What does #YourHashtag look like? Who is the mayor of #YourHashtag?
  • 54. [Divided] Polarized Crowds [Unified] Tight Crowd [Fragmented] Brand Clusters [Clustered] Community Clusters [In-Hub & Spoke] Broadcast Network [Out-Hub & Spoke] Support Network 6 kinds of Twitter social media networks
  • 55. Examples of social network scholarship Margarita M. Orozco Doctoral Student, School of Journalism & Mass Communication University of Wisconsin- Madison Katy Pearce (@katypearce) Assistant Prof of Communication Studies technology & inequality in Armenia & Azerbaijan. Elena Pavan, Ph.D. Post Doctoral Research Fellow Dipartimento di Sociologia e Ricerca Sociale Università di Trento via Verdi 26, 38122 Trento (Italy)
  • 56. Examples of social network scholarship Margrét Vilborg Bjarnadóttir Robert H. Smith School of Business | University of Maryland Data Scientist | Parliamentary Special Investigation Commission Prof. Diane Harris Cline Associate Professor of History George Washington University C. Scott Dempwolf, PhD Research Assistant Professor & Director UMD - Morgan State Center for Economic Development
  • 57. Studying the Colombian Peace Process in Twitter • Analyzing perceptions of the peace process in Colombian public opinion in Twitter. • It is important to know what are citizens thinking, perceptions, and concerns. • Q: who are the main actors in Twitter in favor and against the peace process who are leading sources of information about it? • Colombians are the world’s 15th top Twitter users. For this reason this social media constitutes an important source of information about public opinion. 6/5/2015 57 UNIVERSITY OF WISC ONSIN–MADISONMargarita M. Orozco Doctoral Student, School of Journalism & Mass Communication University of Wisconsin- Madison
  • 58. Katy Pearce (@katypearce) Assistant Prof of Communication Studies technology & inequality in Armenia & Azerbaijan. #ProtestBaku Azerbaijan
  • 59. Take Back The Tech! Reclaiming ICTs against Violence Against Women • Launched in 2006 by the Association for Progressive Communications Women Rights Program (APC WRP) • Runs yearly during the 16 days against Violence Against Women (VAW) • Website http://www.takebackthetech.net • “16 daily actions” to reclaim ICTs against VAW and a Tweetathon • Explored in the context of the project REACtION (http://www.reactionproject.info) in relation to the interplay between the “offline” advocacy strategy and the “online” Twitter networks over time • Findings: shifts in the advocacy strategy shift the network structure – moving from the outside to the online of the institutions (lobbying at the Commission on the Status of Women) led to a centralized Twitter network where organizational and institutional accounts play most central roles REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info. Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy) Elena Pavan, Ph.D. Post Doctoral Research Fellow Dipartimento di Sociologia e Ricerca Sociale Università di Trento via Verdi 26, 38122 Trento (Italy)
  • 60. 2012: Outside institutions, a grassroots conversation REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info. Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
  • 61. 2013: Accessing institutions, a more structured conversation REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info. Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
  • 62. 2014: Inside institutions, a centralized conversation REACtION - Collective Action Networks between Online and Offline Interactions - http://www.reactionproject.info. Grant post-doc 2011 by the Provincia Autonoma di Trento (Italy)
  • 63. Margrét Vilborg Bjarnadóttir Robert H. Smith School of Business | University of Maryland Data Scientist | Parliamentary Special Investigation Commission Data Driven Large Exposure Estimation: A Case Study of a Failed Banking System Co-authors: Sigríður Benediktsdóttir and Guðmundur Axel Hansen Supporting Publications: Margrét V. Bjarnadóttir and Gudmundur A. Hanssen. 2010. Cross-Ownership and Large Exposures; Analysis and Policy Recommendations. Report of the Special Investigation Commission, Volume 9. Sigridur Benediksdottir and Margrét V. Bjarnadóttir. “Large Exposure Estimation through Automatic Business Group Identification”. Proceedings to DSMM 2014.
  • 64. C. Scott Dempwolf, PhD Research Assistant Professor & Director UMD - Morgan State Center for Economic Development http://www.terpconnect.umd.edu/~dempy/
  • 65. Social Network Analysis for the humanities? Social Network Analysis and Ancient History Prof. Diane Harris Cline Associate Professor of History; Affiliated faculty member in Classical and Near Eastern Literatures and Civilizations. George Washington University 1. New framework for analysis 2. Data visualization allows new perspectives – less linear, more comprehensive
  • 66. Applying the insights of social networks to social media: Your social media audience is smaller… …than the audiences of ten influential voices.
  • 67. Build a collection of mayors • Map multiple topics – Your brand and company names – Your competitor brands and company names – The names of the activities or locations related to your products • Identify the top people in each topic • Follow these people – 30-50% of the time they follow you back • Re-tweet these people (if they did not follow you) • 30-50% of the time they follow you back
  • 68. Speak the language of the mayors • Use NodeXL content analysis to identify each users most salient: – Words – Word pairs – URLs – #Hashtags • Mix the language of the Mayors with your brand’s messages.
  • 69. Speak the language of the mayors The “perfect” tweet: .@Theirname #Theirhashtag News about your brand using their words http://your.site #Yourhashtag
  • 70. Speak the language of the mayors
  • 71. Some shapes are better than others: • The value of Broadcast versus community network! • From community to brand! • Support and why community can be a signal of failure!
  • 72. Three network phases of social media success Phase 1: You get an audience Phase 2: Your audience gets an audience Phase 3: Audience becomes community
  • 73. Some shapes are better than others • Each shape reflects the kind of social activity that generates it: – Divided: Conflict – Unified: In-group – Brand: Fragmentation – Community: Clustering – Broadcast: Hub and spoke (In) – Support: Hub and spoke (Out)
  • 74. [Divided] Polarized Crowds [Unified] Tight Crowd [Fragmented] Brand Clusters [Clustered] Communities [In-Hub & Spoke] Broadcast Network [Out-Hub & Spoke] Support Network [Low probability] Find bridge users. Encourage shared material. [Low probability] Get message out to disconnected communities. [Possible transition] Draw in new participants. [Possible transition] Regularly create content. [Possible transition] Reply to multiple users. [Undesirable transition] Remove bridges, highlight divisions. [Low probability] Get message out to disconnected communities. [High probability] Draw in new participants. [Possible transition] Regularly create content. [Possible transition] Reply to multiple users. [Undesirable transition] Increase density of connections in two groups. [Low probability] Dramatically increase density of connections. [High probability] Increase retention, build connections. [Possible transition] Regularly create content. [Possible transition] Reply to multiple users. [Undesirable transition] Increase density of connections in two groups. [Low probability] Dramatically increase density of connections. [Undesirable transition] Increase population, reduce connections. [Possible transition] Regularly create content. [Possible transition] Reply to multiple users. [Undesirable transition] Increase density of connections in two groups. [Low probability] Dramatically increase density of connections. [Low probability] Get message out to disconnected communities. [Possible transition] Increase retention, build connections. [High probability] Increase reply rate, reply to multiple users. [Undesirable transition] Increase density of connections in two groups. [Low probability] Dramatically increase density of connections. [Possible transition] Get message out to disconnected communities. [High probability] Increase retention, build connections. [High probability] Increase publication of new content and regularly create content.
  • 75. Request your own network map and report http://connectedaction.net
  • 76. Monitor your topics with social network maps • Identify the – Key people – Groups – Top topics • Locate your social media accounts within the network
  • 77. What we want to do: (Build the tools to) map the social web • Move NodeXL to the web: (Node[NOT]XL) – Node for Google Doc Spreadsheets? – WebGL Canvas? D3.JS? Sigma.JS • Connect to more data sources of interest: – RDF, MediaWikis, Gmail, NYT, Citation Networks • Solve hard network manipulation UI problems: – Modal transform, Time series, Automated layouts • Grow and maintain archives of social media network data sets for research use. • Improve network science education: – Workshops on social media network analysis – Live lectures and presentations – Videos and training materials
  • 78. How you can help • Sponsor a feature • Sponsor workshops • Sponsor a student • Schedule training • Sponsor the foundation • Donate your money, code, computation, storage, bandwidth, data or employee’s time • Help promote the work of the Social Media Research Foundation
  • 79. A project from the Social Media Research Foundation: http://www.smrfoundation.org Network mapping the social media ecosystem with NodeXL