
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Nearest neighbor models are conceptually just about the simplest kind of model possible. The problem is that they generally aren’t feasible to apply. Or at least, they weren’t feasible until the advent of Big Data techniques. These slides will describe some of the techniques used in the knn project to reduce thousandyear computations to a few hours. The knn project uses the Mahout math library and Hadoop to speed up these enormous computations to the point that they can be usefully applied to real problems. These same techniques can also be used to do realtime model scoring.
Be the first to like this
Be the first to comment