Successfully reported this slideshow.
Upcoming SlideShare
×

Diode clipper-and-clampers-lecture

10,183 views

Published on

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• very very beneficial

Are you sure you want to  Yes  No

Diode clipper-and-clampers-lecture

1. 1. Diode circuitsClippers and Clampers
2. 2. First clipper circuit • Diode is forward biased during positive half cycle – This makes the positive potential 0.7V
3. 3. • Output swings from 0.7V positive to -50V negative
4. 4. Second clipper circuit • Diode is forward biased during negative half cycle – This makes the negative potential 0.7V
5. 5. • Output swings from +24V positive to -0.7V negative
6. 6. Third clipper circuit • Since diodes are in series, each branch will drop 0.7V + 0.7V = 1.4V – Branches are in parallel
7. 7. • Output swings from +1.4V positive to -1.4V negative
8. 8. Fourth clipper circuit • First, determine potential at VBIAS 1k – VBIAS = 15 = 6.8k+1k 0.128 15 = 1.92V • Since diode requires positive potential of 0.7V and adds to VBIAS, maximum positive potential becomes 2.62V
9. 9. • Waveform swings from +2.62V positive to -20V negative
10. 10. First clamper circuit • DC potential is pk – 0.7V = 14.3V – This becomes the zero reference line for the AC, so it will go 15V above and 15V below this line
11. 11. • Output swings from +29.3V positive to -0.7V negative
12. 12. Second clamper circuit • DC potential is pk – 0.7V = 29.3V – This becomes the zero reference line for the AC, so it will go 30V above and 30V below this line
13. 13. • Output swings from +0.7V positive to -59.3V negative
14. 14. Third clamper circuit • This one charges the capacitor during the positive alternation, and this will then discharge during the negative alternation. • This makes the output at maximum a straight line of 40V (2Vpk)
15. 15. • However, since the diode is not perfect we need to use the first approximation (simplified diode) – This means we need to subtract 0.7V for the one diode that charges the capacitor (39.3V) – And lest we forget, subtract the potential for the second diode as well (38.6V)
16. 16. • Output is pulsating wave (ripple) that rises to a maximum potential of 39.3V and descends to a minimum potential of 38.6V