Platelets (thrombocytes) correc


Published on

Published in: Technology, Health & Medicine
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Platelets (thrombocytes) correc

  1. 1. PLATELETS(THROMBOCYTES) Lecture by GK Mbassa
  2. 2. Purpose of knowing structure, biochemistry and functions of platelets Understand qualitative platelet abnormalities Gain knowledge on hemostasis for treatment of diseases Know platelets role in tumor metastases, atherosclerosis and inflammation resulting from cytoplasmic fragments of megakaryocytes, e.g. arachidonic acid.
  3. 3. Morphology of platelets Heterogenous in blood smears; discoid, spheroid, elongated, flat Granular organelles distributed in cytoplasm. Some organelles in centre (granulomere) Platelet cytoplasm is hyalomere, which is clear Platelet is bounded by thin membrane, smooth or having fine projections
  4. 4.  EDTA minimizes platelet clumping Platelets clump to other cells (erythrocytes and neutrophils), called satellitism. Platelet volume in dog, pig, man is 7.6 – 8.3 fl, in cattle, equine, sheep, rat, guinea pig, mouse it is 3.2. – 5.4 fl, while in the cat it is 15.1 fl, Platelet counts vary (1- 10 x 1011/l)
  5. 5.  Larger platelets are metabolically and functionally more active than small platelets. Scanning electron microscope show platelets to have discoid or lentiform shape, with smooth surfaces, slightly biconcave surface, has shallow indentations at external openings of the open canalicular system Surface projections represent protractions of platelets granules
  6. 6.  Surface features of platelets are similar in most species. Platelets diameter length is 1.3 – 4.7 µm in dog, cat, equines, cow, sheep and goat. Platelet thickness is 0.5 µm Transformed platelets acquire pseudopods or projections, found also in normal blood Surface projections occur very fast when blood is taken out of vessel, vary in number and sizes between species
  7. 7. Ultrastructural features ofthe platelet Unit membrane covered with amorphous material (external or exterior coat) Bundles of microtubules in matrix beneath membrane Internal structure comprises of heterogenous granules (alpha-granules) Clycogen particles Dense granules Mitochondria Lysosomes Peroxisomes
  8. 8.  Poorly developed Golgi complex Endoplasmic reticulum (rarely) Spongy like channels, called open canalicular system) Open canalicular system communicate with substance of platelet, open to surface at invaginations. Open canalicular system is lined by unit membrane, covered by external coat Another system of platelet channels is the dense tubular system. Dense tubular system occurs under marginal band of microtubules and appears to open to surface, but does not open on the platelet surface.
  9. 9.  Platelets of many animals have similar morphology. Platelets have two types of granules, (1) alpha-granules, and (2) dense granules. Dense and alpha granules are homogeneously distributed, but vary in electron density, number and size.
  10. 10. Functional organization ofthe plateletPlatelet divided into 4 structural regions (1) Peripheral zone (2) Sol-gel zone (3) Organelle zone (4) Membrane system
  11. 11. Peripheral zone Composed of external (exterior) coat, unit membrane, sub-membraneous area Functions, maintain platelet integrity, receive and transmit stimuli triggering platelet responses (adhesions, aggregations) Exterior coat has glycoproteins (glycocalyx) contains mucopolysaccharides and Mg2+ dependent AT Pase, plasma proteins (fibrinogen, IgG, IgM), coagulation factors (vitamin K- dependent factors, factors V and VIII)
  12. 12.  Glycoproteins have receptors for platelet activation and aggregation. Seven glycoproteins recognised, including glycoprotein 1b (reaction site for von Willebrand factor, a component of coagulation factor VIII) necessary platelet adhesion to endothelium on injured blood vessel Platelet membrane; maintains platelet integrity, rich in phospholipids. Platelet phospholipids function in blood coagulation (eg
  13. 13. Sol-gel zone Represented by matrix of platelet cytoplasm, contains microfilaments and microtubules, which function as cytoskeletal elements. Microfilaments and microtubules maintain discoid platelet shape, form contractile system for shape change, pseudopod formation, internal contractions and granule secretion. Microfilaments also function in clot retraction.
  14. 14.  Microfilaments are also associated with thrombosthenin, a contractile protein (has actin-myosin) Microtubule tubulin dissolves at 4oC, when exposed to colchicine or vinca alkaloids, leading to platelet shape irregularities.
  15. 15. Microfilaments Lysosome Alpha granuleMicrotubulesGolgi complex Open canalicular External coat system Dense tubular system
  16. 16. Organelle zone Composed of all internal platelet components, except microtubules, microfilaments (sol-gel zone) components and membrane system. Main component of organelle zone are platelet granules, that are morphologically and biochemically heterogeneous, azurophilic granules (alpha-granules under electron microscope)
  17. 17.  Alpha-granules are membrane bound, oval, round, electron dense, contain platelet factor 4 (antiheparin), congulation factor V, fibrinogen, beta-thromboglobulin (a thrombin-sensitive protein), fibronection, factor VIII- related antigen, and a mitogenic or growth factor. Platelets in von Willebrand disease lack factor VIII related antigen
  18. 18.  Electron dense granules, called delta granules, or dense bodies contain non metabolic pool ATP and ADP, Ca2+, mono-amines (serotonin, histamine). Dense granules vary with species. Lysosomal granules contain acid hydrolases; acid phosphatase, β- glucuromidase
  19. 19.  Contraction of microtubules forces all internal organelles towards the centre squeezing or without squeezing their contents to the exterior via open canalicular system. Platelet activation triggers secretion of various platelet constituents.
  20. 20. Membrane systemMemberane system comprises the Open canalicular system Dense tubular systemOpen canalicular system provides a passage for externalization of platelet secretory products and internalization of substances from plasma into the platelet.Dense tubular system provides a site for sequestration of Ca2+ and localization of enzymes needed for prostaglandin synthesisRelease of Ca2+ from the dense tribular system triggers platelet aggregation
  21. 21. Platelet constituentsPlatelet Constituent FunctionlocationExterior coat Fibrinogen Platelet aggregationMembrane Arachidonic acid Prostaglandin synthesis Plaletet factor 3 Enhances (phospholipid) Coagulation cAMP Inhibits release reaction
  22. 22. Platelet constituentsMicrotubules Tubulin Cytoskeleton ContractilityMicrofilaments Thrombosthenin Shape change, clot reaction, release reactionAlpha-granules Beta- Impedes thromboglobulin prostacylin production from endothelial cells Catalase Enzymic process
  23. 23. Factor VIII- Platelet adhesion torelatedantigen subendotheliumFibrinogen Shape change, clot reaction, release reactionBeta- Impedes prostacylinthromboglobuli production fromn endothelial cellsFibronectin Adherence to extracellular matrix Promote wound healing
  24. 24. Vasoconstriction Endothelial damage Anticoagulation ADP Platelet Collagen Plasmin adherence vWF PF3 tp Clot dissolution ADP Thrombin (IIA) PGI2 Anti-aggregation Platelet release Fibrin TS and deposition Clot retraction aggregation Platelet plague Growth factor Endothelial regeneration Extrinsic activation Intrinsic activation
  25. 25. STRUCTURAL ABNORMALITIESOF PLATELETS Morphologic changes occur in platelets after Contact with non physiologic surfaces. Exposure to platelet aggregation agents.
  26. 26.  The structural abnormalities involving: Sphering Degranulation (ECF) Budding Indentations Pseudopods Vacuolation.
  27. 27. PLATELET METABOLISM The dry platelet has 50% proteins, 8.5% carbohydrates, the rest are lipids, and others chemicals. Platelets get energy from Anaerobic glycolysis Hexose monophosphate pathway Oxidative phosphorylation in mitochondria
  28. 28.  Arachidonic acid metabolism Arachidonate metabolites function in haemostasis and thrombosis involving platelet-vessel wall interactions and synthesis of prostaglandins and thromboxanes. Stimulated platelets liberate arachidomic acid from membrane phospholipids, by phospholipase and corphospholipase A.
  29. 29.  Platelets stimulators Thrombin ADP Collagen Epinephrine Calcium ionophores.
  30. 30. FUNCTIONS OF PLATELETS Platelets have been observed to play a role in the following; Maintain haemostasis Maintain vascular integrity (with endothelial cells) Blood coagulation, (provide platelet phospholipid (platelet factor 3), carry coagulation factors on their surfaces. Clot retraction (contractile protein system involving thrombosthenin).
  31. 31.  Role in thrombosis and embolism Role in flammatory responses (activation of chemotactic substances release of cationic proteins and vasoactive amines) Phagocytosis of small particles and bacteria Role in atherosclerosis Platelets are secretory cells, producing proteins, procoagulant, anti-heparin, inflammatory and growth-promoting activities
  32. 32. QUALITATIVE ANDQUANTITATIVE DISORDERS OFPLATELETS Platelet disorders are characterized as qualitative or functional and qualitative or both. Qualitative platelet disorders include; Hereditary, e.g Glanzmann’s thrombosthenia
  33. 33.  Acquired Quantitative platelet disorders include; Thrombocytopaenia is the most frequent, causes hemorrhagic diathesis Thrombocytosis may be physiologic or reactive Thrombosythemia a proliferative disorder of megakaryocytes in bone marrow, associated with severe thrombocytosis
  34. 34.  Signs, diagnosis and common abnormalities There are hereditary or acquired qualitative platelets disorders, and vary in severity. They involve multiple functional platelet abnormalities, and caused by;  extrinsic abnormalities defects in morphological and biochemical components of platelets or megakaryocytes
  35. 35.  Qualitative and quantitative platelet defects have similar clinical signs despite of differences in origin and may differ in pathogenesis. Signs of qualitative platelet disorders (1)Increased tendency to bleed (2)Prolonged bleeding time, in a situation of increased or normal platelet count. (3)Set on early in life. (4)Familial occurrence
  36. 36.  Diagnostic examination of qualitative platelet disorders (1)Platelet count (2)Platelet distribution on blood films (3)Platelet morphology (4)Bleeding time (5)Prothrombin time (6)Partial prothrombin time. (7)In vitro platelet aggregation test (adrenalin, collagen, ADP ristocetin).
  37. 37.  (8)Platelet retention test in glass bead column (9)In vivo platelet adhesion test Common abnormalities in platelet function Aggregation Retention in glass bead column Availability of platelet factors 3 (PF-3)
  38. 38.  Cause of acquired qualitative platelet functional disorders Acquired platelet disorders occur with or without hemorrhagic manifestations, occur in; Renal disease, with uremia Liver disease Myeloproliferative disorders Lymphoproliferative disorders Macroglobulinemia Plasma cell myeloma
  39. 39.  Immune mediated disorders (autoimmune thrombocytopenia, autoimmune hemolytic anemia, systemic lupus erythrematosus, circulating fibrin, circulating fibronogen split products – cirrhosis, disseminated intravascular coagulation) Vitamin deficiency Congenital heart disease Acquired storage pool disease (deficiency of platelet dense bodies) Drug therapy (non-steroid anti- inflammatory drugs eg. asprin
  40. 40.  Causes of hereditary qualitative platelet disorders 1. Glanzmann’s thrombasthenia Glanzmann’s thrombasthenia, a hemorrhagic disorder due to autosomal recessive inheritance characterized by; Greatly prolonged bleeding time in presence of normal platelet counts and coagulation factors Spontaneous purpuric mucosal and cultaneous bleeding Early onset in life
  41. 41.  The defects include Lack of platelet aggregation with ADP, collagen, thrombin, clot retraction PF-3 availability Absence of membrane glycoprotein IIb, IIIa, Lack of receptors for fibrinogen Short life of platelets (4 days, normal 7 days).
  42. 42.  2. Hereditary thrombopathia Hereditary thrombopathia occurs in dogs due to autosomal inheritance, characterized by markedly abnormal platelet function, depressed ADP and collagen aggregation and slightly prolonged bleeding time.
  43. 43.  3. Von Willebrand’s disease A hereditary bleeding disorder Prolonged bleeding time, normal clot retraction Quantitative and qualitative disorder of von Willbrand’s factor associated with factor VIII – related antigen (VIII-Ag). Decreased adherence of platelet to injured vessels and glass beeds.