Home
Explore
Submit Search
Upload
Login
Signup
Advertisement
Check these out next
PCA
mathurnidhi
Introduction to Principle Component Analysis
Sunjeet Jena
Spectral clustering Tutorial
Zitao Liu
Visual Explanation of Ridge Regression and LASSO
Kazuki Yoshida
AI 11 | Markov Model
Mohammad Imam Hossain
Ridge regression
Ananda Swarup
Pca(principal components analysis)
kalung0313
Introduction to Capsule Networks (CapsNets)
Aurélien Géron
1
of
266
Top clipped slide
PCA (Principal Component Analysis)
Dec. 3, 2019
•
0 likes
3 likes
×
Be the first to like this
Show More
•
1,044 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Download Now
Download to read offline
Report
Technology
Accompanying slides for the PCA video: https://www.youtube.com/watch?v=g-Hb26agBFg
Luis Serrano
Follow
Advertisement
Advertisement
Advertisement
Recommended
Principal Component Analysis
Ricardo Wendell Rodrigues da Silveira
29K views
•
23 slides
Principal component analysis
Farah M. Altufaili
13K views
•
27 slides
Principal component analysis
Partha Sarathi Kar
6.4K views
•
29 slides
Lect4 principal component analysis-I
hktripathy
736 views
•
22 slides
Implement principal component analysis (PCA) in python from scratch
EshanAgarwal4
2.9K views
•
20 slides
03 Machine Learning Linear Algebra
Andres Mendez-Vazquez
4.7K views
•
122 slides
More Related Content
Slideshows for you
(20)
PCA
mathurnidhi
•
6.7K views
Introduction to Principle Component Analysis
Sunjeet Jena
•
427 views
Spectral clustering Tutorial
Zitao Liu
•
8.7K views
Visual Explanation of Ridge Regression and LASSO
Kazuki Yoshida
•
6.7K views
AI 11 | Markov Model
Mohammad Imam Hossain
•
162 views
Ridge regression
Ananda Swarup
•
3.4K views
Pca(principal components analysis)
kalung0313
•
427 views
Introduction to Capsule Networks (CapsNets)
Aurélien Géron
•
10.5K views
Pca
Nalini. Yadav
•
2.5K views
Complements and Conditional Probability, and Bayes' Theorem
Long Beach City College
•
413 views
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
Simplilearn
•
9.1K views
Principal Component Analysis(PCA) understanding document
Naveen Kumar
•
600 views
Graph Convolutional Neural Networks
신동 강
•
5.2K views
Principal component analysis and lda
Suresh Pokharel
•
3.2K views
Dimension reduction techniques[Feature Selection]
AAKANKSHA JAIN
•
243 views
Scalable k-means plus plus
Prabin Giri, PhD Student
•
197 views
Machine Learning for Survival Analysis
Chandan Reddy
•
6.3K views
K mean-clustering algorithm
parry prabhu
•
47.4K views
Lecture 18: Gaussian Mixture Models and Expectation Maximization
butest
•
13.1K views
Principal Component Analysis and Clustering
Usha Vijay
•
684 views
Similar to PCA (Principal Component Analysis)
(20)
5 - the distributive property
anthonymaiorano
•
571 views
x1 t10 04 maximum & minimum problems (13)
Nigel Simmons
•
628 views
05 2 관계논리비트연산
Changwon National University
•
99 views
group4-randomvariableanddistribution-151014015655-lva1-app6891 (1).pdf
PedhaBabu
•
5 views
Synthetic Division
Jimbo Lamb
•
1.1K views
Algebra 2 Section 1-7
Jimbo Lamb
•
154 views
Geometry Section 2-8
Jimbo Lamb
•
90 views
Math Short Tricks ( english)
Exam Affairs!
•
1.5K views
Introduction to machine learning algorithms
bigdata trunk
•
177 views
Math 5
International advisers
•
18 views
Chapter 1 review topic in algebra 1
jennytuazon01630
•
2.1K views
Programming's Greatest Hits of the 60s and 70s
Michelle Brush
•
401 views
ゲーム理論BASIC 演習30 -左右の靴ゲーム-
ssusere0a682
•
54 views
Sequences and series power point
lmgraham85
•
13.2K views
Genetic Algorithm (GA) Optimization - Step-by-Step Example
Ahmed Gad
•
34.9K views
Annie
jennytuazon01630
•
694 views
Confidencesignificancelimtis
guest9fa52
•
219 views
Confidencesignificancelimtis
guest2137aa
•
241 views
Sd
Antony Raj
•
4 views
ゲーム理論BASIC 演習31 -ベームバベルク市場-
ssusere0a682
•
43 views
Advertisement
More from Luis Serrano
(9)
Convolutional neural neworks
Luis Serrano
•
448 views
Linear regression
Luis Serrano
•
221 views
Support vector machines (SVM)
Luis Serrano
•
175 views
Logistic regression
Luis Serrano
•
153 views
Singular value decomposition (SVD)
Luis Serrano
•
405 views
Restricted Boltzmann Machines (RBM)
Luis Serrano
•
181 views
Generative Adversarial Networks (GANs)
Luis Serrano
•
352 views
Bayes theorem and Naive Bayes algorithm
Luis Serrano
•
363 views
Matrix factorization
Luis Serrano
•
675 views
Recently uploaded
(20)
Crewlogout Overview
livestimes
•
0 views
Memory Matters: Drift Detection with a Low Memory Footprint for ML Models on ...
HostedbyConfluent
•
0 views
Balance Kafka Cluster with Zero Data Movement with Haochen Li & Yaodong Yang
HostedbyConfluent
•
0 views
Plant Disease Detection.pptx
vikasmittal92
•
0 views
Unit 5.pdf
BALASHANMUGAVADIVUPM
•
0 views
jsday 2023: Build ChatGPT over SMS in Italy
Elizabeth (Lizzie) Siegle
•
0 views
solar panel.pptx
AbdulberBaig
•
0 views
Lesson-01.pptx
ssuserc24e05
•
0 views
Intro to Text Classification with TensorFlow
Elizabeth (Lizzie) Siegle
•
0 views
如何办理一份高仿东伦敦大学毕业证成绩单?
aazepp
•
0 views
Networking Hardware Requirements.pptx
JhamaikaPaet
•
0 views
Material Requisition for 2" Autonomous Robotic Fire Suppression System for We...
RogerJames25
•
0 views
CyberEthics.ppt
ANKITKUMAR920995
•
0 views
SEKISUI - RFID Journal Live - May 2023.pdf
Rich Rogers
•
0 views
What are the Reactjs Properties
TutorialsFreak
•
0 views
KPIs&Goals.pdf
mennaHendy
•
0 views
Refactr.tech.pptx
Elizabeth (Lizzie) Siegle
•
0 views
Our Business Goals.pdf
mennaHendy
•
0 views
Fortnite Is Awsome!!!
YT SavageGuy
•
0 views
Aristiun Whitepaper- Automated Threat Modelling with Aribot
Aristiun B.V.
•
0 views
Advertisement
PCA (Principal Component Analysis)
Principal Component Analysis
(PCA)
Principal Component Analysis
(PCA)
Principal Component Analysis
(PCA) Luis Serrano
1. Projections
Taking a picture
Taking a picture
Taking a picture
Taking a picture
Taking a picture
Taking a picture
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
Dimensionality Reduction
2. Application to
housing
Housing Data
Housing Data Size
Housing Data Size Number of
rooms
Housing Data Size Number of
rooms Number of bathrooms
Housing Data Size Number of
rooms Number of bathrooms Schools around
Housing Data Size Number of
rooms Number of bathrooms Schools around Crime rate
Housing Data Size Number of
rooms Number of bathrooms Schools around Crime rate
Housing Data Size Number of
rooms Number of bathrooms Size feature Schools around Crime rate
Housing Data Size Number of
rooms Number of bathrooms Size feature Schools around Crime rate Location feature
100 200 300 400 1 2 3
4 Number of Rooms Size 5
100 200 300 400 1 2 3
4 Number of Rooms Size 5
100 200 300 400 1 2 3
4 Number of Rooms Size 5
100 200 300 400 1 2 3
4 Number of Rooms Size 5
Size feature
2 dimensions
2 dimensions 1
dimension
2 dimensions 1
dimension size number of rooms
2 dimensions 1
dimension size number of rooms size feature
Housing Data
Housing Data 5 dimensions
Housing Data 5 dimensions
2 dimensions
Housing Data Size Number of
rooms Number of bathrooms Schools around Crime rate 5 dimensions 2 dimensions
Housing Data Size Number of
rooms Number of bathrooms Size feature Schools around Crime rate 5 dimensions 2 dimensions
Housing Data Size Number of
rooms Number of bathrooms Size feature Schools around Crime rate Location feature 5 dimensions 2 dimensions
3. Mean, Variance,
Covariance
Mean
Mean
Mean
Mean wall
Mean 1 2 3
4 5 6 wall
Mean 1 2 3
4 5 6 1+2+6 wall
Mean 1 2 3
4 5 6 1+2+6 wall Mean =
Mean 1 2 3
4 5 6 1+2+6 wall Mean =
Mean 1 2 3
4 5 6 1+2+6 3wall Mean =
Mean 1 2 3
4 5 6 1+2+6 3 = 3 wall Mean =
Mean 1 2 3
4 5 6 1+2+6 3 = 3 wall Mean =
Variance
Variance
Variance
Variance
Variance
Variance 1 1
Variance 1 1 5 5
Variance 1 1 5 5 Variance
=
Variance 1 1 5 5 12 +02 +12 Variance
=
Variance 1 1 5 5 12 +02 +12 Variance
=
Variance 1 1 5 5 12 +02 +12 3 Variance
=
Variance 1 1 5 5 12 +02 +12 3 =
2/3Variance =
Variance 1 1 5 5 12 +02 +12 3 =
2/3Variance = Variance =
Variance 1 1 5 5 12 +02 +12 3 =
2/3Variance = 52 +02 +52 Variance =
Variance 1 1 5 5 12 +02 +12 3 =
2/3Variance = 52 +02 +52 Variance =
Variance 1 1 5 5 12 +02 +12 3 =
2/3Variance = 52 +02 +52 3 Variance =
Variance 1 1 5 5 12 +02 +12 3 =
2/3Variance = 52 +02 +52 3 = 10/3Variance =
Mean 1 2 3
4 5 6
Mean 2 1 2 3
4 5 6
Mean 2 1 1 2 3
4 5 6
Mean 2 1 3 1 2 3
4 5 6
Mean 2 1 3 1 2 3
4 5 6 Variance =
Mean 2 1 3 1 2 3
4 5 6 22 +12 +32 Variance =
Mean 2 1 3 1 2 3
4 5 6 22 +12 +32 Variance =
Mean 2 1 3 1 2 3
4 5 6 22 +12 +32 3 Variance =
Mean 2 1 3 1 2 3
4 5 6 22 +12 +32 3 = 14/3Variance =
Variance?
Variance?
Variance?
Variance?
Variance?
Variance? x-variance
Variance? x-variance
Variance? x-variance y-variance
Variance?
Variance?
Variance?
Variance?
Variance? 22 22
Variance? x-variance = 22 +02 +22 3 = 8/3 22
22
Variance? x-variance = 22 +02 +22 3 = 8/3 22
22
Variance? x-variance = 22 +02 +22 3 = 8/3 22
22 1 1 1 1
Variance? x-variance = 22 +02 +22 3 = 8/3 y-variance
= 12 +02 +12 3 = 2/3 22 22 1 1 1 1
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1)
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1) Product of coordinates
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1) 0 Product of coordinates
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1) +2 0 +2 Product of coordinates
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1) +2 -2 0 -2 +2 Product of coordinates
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1) +2 -2 0 -2 +2 Product of coordinates
Covariance (0,0) (2,1) (2,-1)(-2,-1) (-2,1) +2 -2 0 -2 +2 Product of coordinates
Covariance
Covariance (-2,1) (2,-1) -2 -2 (0,0) 0
Covariance (-2,1) (2,-1) -2 -2 (0,0) 0 (2,1) (-2,-1) 2 2(0,0) 0
Covariance covariance = (-2) +
0 + (-2) 3 = -4/3 (-2,1) (2,-1) -2 -2 (0,0) 0 (2,1) (-2,-1) 2 2(0,0) 0
Covariance covariance = (-2) +
0 + (-2) 3 = -4/3 covariance = 2 + 0 + 2 3 = 4/3 (-2,1) (2,-1) -2 -2 (0,0) 0 (2,1) (-2,-1) 2 2(0,0) 0
Covariance (0,0) (2,0) (2,1) (2,-1)(0,-1) (0,1)(-2,1) (-2,0) (-2,-1)
Covariance (0,0) (2,0) (2,1) (2,-1)(0,-1) (0,1)(-2,1) (-2,0) (-2,-1) -2 2 0 0 0 00 -22
Covariance covariance = (0,0) (2,0) (2,1) (2,-1)(0,-1) (0,1)(-2,1) (-2,0) (-2,-1) -2
2 0 0 0 00 -22
Covariance covariance = + +
+ + + + + + 9 (0,0) (2,0) (2,1) (2,-1)(0,-1) (0,1)(-2,1) (-2,0) (-2,-1) -2 2 00 000 -22
Covariance covariance = + +
+ + + + + + 9 = 0 (0,0) (2,0) (2,1) (2,-1)(0,-1) (0,1)(-2,1) (-2,0) (-2,-1) -2 2 00 000 -22
Covariance
Covariance
Covariance
Covariance
Covariance negative covariance
Covariance negative covariance covariance zero (or very
small)
Covariance negative covariance covariance zero (or very
small) positive covariance
4. Eigenvectors and
Eigenvalues
Covariance matrix
Covariance matrix
Covariance matrix Var(X)
Covariance matrix Var(X) Var(Y)
Covariance matrix Var(X) Var(Y) Cov(X,Y) Cov(X,Y)
Covariance matrix Var(X) Var(Y) Cov(X,Y) Cov(X,Y) =
Covariance matrix Var(X) Var(Y) Cov(X,Y) Cov(X,Y) = 9 3 4 4
Linear Transformations
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4 (x, y)
Linear Transformations 9 3 4 4 (x, y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (9,4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (9,4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (9,4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (9,4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (9,4) (4,3)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (9,4) (4,3)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (9,4) (4,3)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (9,4) (4,3)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (9,4) (4,3) (-9,-4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (9,4) (4,3) (-9,-4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (0,-1) (9,4) (4,3) (-9,-4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (0,-1) (9,4) (4,3) (-9,-4)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (0,-1) (9,4) (4,3) (-9,-4) (-4,-3)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (0,-1) (9,4) (4,3) (-9,-4) (-4,-3)
Linear Transformations 9 3 4 4 (x, y)
(9x+4y, 4x+3y) (0,0) (0,0) (1,0) (0,1) (-1,0) (0,-1) (9,4) (4,3) (-9,-4) (-4,-3)
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4
Linear Transformations 9 3 4 4 11
Linear Transformations 9 3 4 4 11
Linear Transformations 9 3 4 4 11
Linear Transformations 9 3 4 4 11
Linear Transformations 9 3 4 4 11 1
Linear Transformations 9 3 4 4 2 1 11 1
Linear Transformations 9 3 4 4 2 1 -1 2 11 1
Linear Transformations 9 3 4 4 2 1 -1 2 Eigenvectors (direction) 11 1
Linear Transformations 9 3 4 4 2 1 -1 2 11 Eigenvectors (direction) 11 1
Linear Transformations 9 3 4 4 2 1 -1 2 11
1 Eigenvectors (direction) 11 1
Linear Transformations 9 3 4 4 2 1 -1 2 11
1 Eigenvectors (direction) Eigenvalues (magnitude) 11 1
Linear Transformations
Linear Transformations Eigenvectors
Linear Transformations Eigenvectors Eigenvalues
Linear Transformations 2 1 Eigenvectors Eigenvalues
Linear Transformations 2 1 11 Eigenvectors Eigenvalues
Linear Transformations 2 1 11 Eigenvectors Eigenvalues
Linear Transformations 2 1 -1 2 11 Eigenvectors Eigenvalues
Linear Transformations 2 1 -1 2 11 1 Eigenvectors Eigenvalues
Linear Transformations 2 1 -1 2 11 1 Eigenvectors Eigenvalues
Linear Transformations 2 1 -1 2 11 1 Eigenvectors Eigenvalues
Eigenstuff
Eigenstuff
Eigenstuff
Eigenstuff
Eigenstuff
Eigenstuff
Eigenstuff
Eigenstuff 9 3 4 4
Eigenstuff 9 3 4 4 v
Eigenstuff 9 3 4 4 v =
Eigenstuff 9 3 4 4 v =
Eigenstuff 9 3 4 4 v = v
Eigenstuff 9 3 4 4 v = v Eigenvector
Eigenstuff 9 3 4 4 v = v Eigenvector Eigenvalue
Eigenvalues 9 3 4 4
Eigenvalues Characteristic Polynomial 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) = x2 - 12x + 11 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) = x2 - 12x + 11 (x-11)(x-1)= 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) = x2 - 12x + 11 (x-11)(x-1)= Eigenvalues 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) = x2 - 12x + 11 (x-11)(x-1)= Eigenvalues 11 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) = x2 - 12x + 11 (x-11)(x-1)= Eigenvalues 11 and 9 3 4 4
Eigenvalues Characteristic Polynomial x-9 x-3 -4 -4 = (x-9)(x-3)
- (-4)(-4) = x2 - 12x + 11 (x-11)(x-1)= Eigenvalues 11 1and 9 3 4 4
Eigenvectors
Eigenvectors 9 3 4 4
Eigenvectors 9 3 4 4 u v
Eigenvectors 9 3 4 4 u v =
Eigenvectors 9 3 4 4 u v = 11
Eigenvectors 9 3 4 4 u v = u v 11
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4 u v
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4 u v =
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4 u v = 1
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4 u v = u v 1
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4 u v = u v 1 2 1 u v =
Eigenvectors 9 3 4 4 u v = u v 11 9 3 4 4 u v = u v 1 2 1 u v = -1 2 u v =
3blue1brown
4. PCA
Principal Component Analysis
(PCA)
Principal Component Analysis
(PCA)
Principal Component Analysis
(PCA) =
Principal Component Analysis
(PCA) 9 =
Principal Component Analysis
(PCA) 9 3 =
Principal Component Analysis
(PCA) 9 3 4 4 =
Principal Component Analysis
(PCA) Eigenvectors 9 3 4 4 =
Principal Component Analysis
(PCA) Eigenvectors 9 3 4 4 = (direction)
Principal Component Analysis
(PCA) Eigenvectors 9 3 4 4 = Eigenvalues (direction)
Principal Component Analysis
(PCA) Eigenvectors 9 3 4 4 = Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 -1 2 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 -1 2 Eigenvectors 9 3 4 4 = 11 1 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 -1 2 Eigenvectors 9 3 4 4 = 11 1 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 -1 2 Eigenvectors 9 3 4 4 = 11 1 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 -1 2 Eigenvectors 9 3 4 4 = 11 1 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA) 2 1 Eigenvectors 9 3 4 4 = 11 Eigenvalues (direction) (magnitude)
Principal Component Analysis
(PCA)
Principal Component Analysis
(PCA)
Thank you!
Thank you! Subscribe, like, share,
comment! youtube.com/c/LuisSerrano
Thank you! @luis_likes_math Subscribe, like, share,
comment! youtube.com/c/LuisSerrano
Advertisement