Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
What to Upload to SlideShare
Next
Download to read offline and view in fullscreen.

Share

Convolutional neural neworks

Download to read offline

Convolutional neural networks
Slides for this video:
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

  • Be the first to like this

Convolutional neural neworks

  1. 1. Luis Serrano A friendly introduction to Convolutional Neural Networks and Image Recognition
  2. 2. Person AlphabetComputer / / / ! Simple World
  3. 3. Simple World 1 11 1
  4. 4. Simple World /
  5. 5. Keyboard
  6. 6. Image recognition software /
  7. 7. -1 1 1 -1 1 -1 -1 1 / 1 -1 -1 1 -1 1 1 -1 + + - - + -+ - + - +- + - +- = 4 = -4 +1 +1 +1+1 -1 -1 -1-1 + + + = 0 + + + = 0 x x x = 1 x x x = 1
  8. 8. + - - + Image Recognition Classifier If positive, “” If negative, “/”
  9. 9. -1 -1 1 -1 1 1 -1 1
  10. 10. -1 -1 1 -1 1 1 -1 1 / + + - - + -+ - 1 1 -1 1 -1 -1 1 -1 = 2 = -2 +1 -1 +1+1 -1 +1 -1-1 + - +- + - +-
  11. 11. Artificial Intelligence ? = = / + - - +
  12. 12. Artificial Intelligence - - - - - + + - + - - - - + - + - + - - - - + - - - + + + + + - - - - + + + - - + - + - + - - + + + - + + - + + - + + + + + + + 16 choices
  13. 13. Artificial Intelligence + + + + so-so
  14. 14. Artificial Intelligence + + + + - + + + + - + + + + + - + + - +so-so worse better worse better
  15. 15. Artificial Intelligence + + + + - + + + + - + + + + + - + + - +so-so - - + + + - - + + - + - worse better! worse
  16. 16. Artificial Intelligence Way too many choices 0.5 1.2 0.7 1.0 0.9 -0.7 -0.6 1.1 , , etc…
  17. 17. Gradient Descent 0.5 1.2 0.7 1.0 0.6 0.9 0.5 1.1 0.7 0.4 0.3 1.2 0.9 -0.2 -0.2 1.1 0.9 -0.7 -0.6 1.1 1 -1 -1 1 Lots of errors Derivatives Few errors
  18. 18. XOXO! Slightly More Complex World Person Alphabet X O Computer X O
  19. 19. 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 / X O
  20. 20. 1 -1 1 -1 1 -1 1 -1 1 + + - - + - + - +
  21. 21. 1 -1 -1 1 Previous Knowledge -1 1 1 -1
  22. 22. X O / 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 Convolutional Neural Network Convolution Layer Pooling Layer Fully Connected Layer
  23. 23. 1 -1 1 -1 1 -1 1 -1 1 4 -4 -4 4 + - - + + + - - -4 4 4 -4 - + + - - - + + Convolution Layer Pooling Layer
  24. 24. 1 -1 1 -1 1 -1 1 -1 1
  25. 25. -1 1 -1 1 -1 1 -1 1 -1 -4 4 4 -4 + - - + + + - - 4 -4 -4 4 - + + - - - + +
  26. 26. -1 1 -1 1 -1 1 -1 1 -1
  27. 27. 1 -1 -1 -1 1 -1 -1 -1 1 4 -2 -2 4 + - - + + + - - -4 2 2 -4 - + + - - - + +
  28. 28. 1 -1 -1 -1 1 -1 -1 -1 1
  29. 29. -1 -1 1 -1 1 -1 1 -1 -1 2 -4 -4 2 + - - + + + - - -2 4 4 -2 - + + - - - + +
  30. 30. -1 -1 1 -1 1 -1 1 -1 -1
  31. 31. Convolution Layer Pooling Layer Fully Connected Layer
  32. 32. 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1
  33. 33. 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 + - - + - + + - X - + + - + - - + - - - - - + + - + - - + - - - - O / Filters
  34. 34. 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 + - - + - + + - - + + - + - - + - - - - - + + - + - - + - - - - 8X O / -8 4 4 +1 +1 +1+1 +1 +1 +1+1
  35. 35. -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 + - - + - + + - - + + - + - - + - - - - - + + - + - - + - - - - -8X O / 8 -4 -4
  36. 36. -1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 + - - + - + + - - + + - + - - + - - - - - + + - + - - + - - - - 4X O / -4 8 0
  37. 37. 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 + - - + - + + - - + + - + - - + - - - - - + + - + - - + - - - - 4X O / -4 0 8
  38. 38. 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 X O / Convolutional Neural Network Convolution Layer Pooling Layer Fully Connected Layer
  39. 39. + - - + + - - + + - - + + - - + - + + - - + + - - + + - - + + - + - - + - + + - - + + - + - - + - - - - - + + - + - - + - - - - 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 X O / Convolution Layer Pooling Layer Fully Connected Layer
  40. 40. + - - + + - - + + - - + + - - + - + + - - + + - - + + - - + + - + - - + - + + - - + + - + - - + - - - - - + + - + - - + - - - - 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 X O / Convolution Layer Pooling Layer Fully Connected Layer 8 -8 4 4
  41. 41. X O Artificial Intelligence ?
  42. 42. Gradient Descent X O Lots of errors Few errors
  43. 43. People Computer Alphabet Advanced World
  44. 44. http://serrano.academy https://www.linkedin.com/in/luisgserrano https://www.youtube.com/c/LuisSerrano Twitter: luis_likes_math Subscribe, like, share, comment

Convolutional neural networks Slides for this video: https://www.youtube.com/watch?v=2-Ol7ZB0MmU

Views

Total views

161

On Slideshare

0

From embeds

0

Number of embeds

0

Actions

Downloads

24

Shares

0

Comments

0

Likes

0

×